Transforming Kidney Care in the Emergency Department using Artificial Intelligence Driven Clinical Decision Support
Project Number1R01HS027793-01
Contact PI/Project LeaderHINSON, JEREMIAH STEPHEN Other PIs
Awardee OrganizationJOHNS HOPKINS UNIVERSITY
Description
Abstract Text
PROJECT SUMMARY/ABSTRACT
The objective of this proposal is to determine best-practice methods for incorporating artificial intelligence (AI)-
derived insights into emergency care. This investigation will use the iterative development and evaluation of an
AI-driven clinical decision support (CDS) system to prevent or mitigate acute kidney injury (AKI) as a reference
use-case. We are responding to the AHRQ Special Emphasis Notice: Health Services Research Priorities for
Achieving a High Value Healthcare System (NOT-HS-18-015), calling for research on prevention of disease
through incorporation of AI into healthcare and on interventions to prevent kidney disease progression.
Emergency departments (EDs) deliver high-volume patient care in hazardous decision-making environments
fraught with excessive cognitive loading and time-pressure. AI has potential to support ED clinician decisions
by exploiting large-scale electronic health record (EHR) data to aid prognosis, extract signal from noise, and
reduce untoward variability in practice. Despite AI’s fervent promotion, translation to practice is rare and means
to incorporate AI that is trustworthy, transparent, and explainable in the ED are unknown.
AKI is an important target for AI-driven predictive modeling. It is prevalent and strongly associated with adverse
outcomes including dialysis and death, yet is under-recognized and therefore under-treated. In addition, many
ED treatments inadvertently promote the progression of AKI and kidney disease. AKI prevention is achievable
with evidence-based CDS at the point of care. We will use our AI-driven model, with proven capacity for early
and reliable AKI risk estimation, to achieve the following Specific Aims:
Aim 1: Develop an AI-driven algorithm for promotion of AKI-focused clinical decision-making in the ED.
We will leverage previously developed AKI surveillance and prediction tools to generate a unified EHR-based
algorithm that empowers ED clinician prevention of kidney disease progression.
Aim 2: Translate the AI algorithm to an AKI-CDS system to enable in-depth study of Clinician-AI
interactions in the ED. We will establish end-user requirements while creating data collection instruments to
examine AI in the ED. Both efforts will support the development of the AKI-CDS system to pilot and investigate
ED clinician perceptions of AI trustworthiness and explainability in preparation for multi-site implementation.
Aim 3: Perform a multi-site effectiveness-implementation evaluation of the AKI-CDS system in the ED.
We will implement the AI-driven CDS system across three ED study sites using a pragmatic investigational
framework to perform effectiveness and implementation evaluations in parallel.
The research proposed will generate new knowledge and tools to advance the study of AI in the ED, and will
result in a scalable CDS product with the capacity to improve the quality of kidney care delivered to more than
1 million patients affected by AKI in the US each year.
Public Health Relevance Statement
PROJECT NARRATIVE
The research project Transforming Kidney Care in the Emergency Department (ED) using Artificial Intel-
ligence Driven Clinical Decision Support is to determine best-practice methods for incorporating artificial
intelligence (AI)-derived insights into emergency care delivery. This investigation will use the iterative develop-
ment and evaluation of an AI-driven clinical decision support (CDS) system to prevent or mitigate acute kidney
injury (AKI) as a reference use-case. The proposed research aims to increase our understanding of human-AI
interactions in the emergency care setting through the development and evaluation of a novel AI-driven deci-
sion support system for kidney disease.
No Sub Projects information available for 1R01HS027793-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01HS027793-01
Patents
No Patents information available for 1R01HS027793-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01HS027793-01
Clinical Studies
No Clinical Studies information available for 1R01HS027793-01
News and More
Related News Releases
No news release information available for 1R01HS027793-01
History
No Historical information available for 1R01HS027793-01
Similar Projects
No Similar Projects information available for 1R01HS027793-01