PIP5K1A as a novel driver of PI3K signaling in health and disease
Project Number1R03TR003624-01
Contact PI/Project LeaderHAMMOND, GERALD R
Awardee OrganizationUNIVERSITY OF PITTSBURGH AT PITTSBURGH
Description
Abstract Text
PROJECT SUMMARY
PIP5K1A is amplified or mutated in approximately 5% of cancers, yet its potential as a drug target has not
been realized to date. The enzyme is known to synthesize the key regulatory lipid PI(4,5)P2. Amplification of
PIP5K1A therefore disrupts PI(4,5)P2 homeostasis, but the diaspora of plasma membrane function downstream
of PI(4,5)P2 has made it difficult to identify the related function(s) disrupted in malignant disease. Our objective
in this R03 is to determine the extent to which disrupted PI(4,5)P2 homeostasis and PIP5K1A amplification
changes PI3K signaling, since PI3K is known to be a central pathway in tumorigenesis and PI(4,5)P2 is its
substrate. Our central hypothesis is that PI(4,5)P2 homeostasis is a key determinant of PI3K signal strength in
health and disease. Recent evidence indicates that PIP5K enzymes are negatively regulated by binding to with
the related PIP4K enzymes, independent of PIP4K catalytic activity. Our own unpublished work shows that
PIP4K proteins are also low-affinity PI(4,5)P2 binding proteins in cells, suggesting a tripartite PI(4,5)P2
homeostat; consequently, PIP5K1A over-expression is expected to upregulate PI(4,5)P2 levels but crucially, to
do so in a catalytically independent manner, since the over-expressed PIP5K sequesters the available negative
regulator, PIP4K. Elevated PI(4,5)P2 levels then drive enhanced PI3K signaling. The rationale for this work is
that by identifying the mechanism by which PIP5K1A amplification disrupts PI(4,5)P2 homeostasis and enhances
PI3K signal strength, we will illuminate the path to developing small molecule inhibitors of PIP5K1A. To this end,
we will address the following specific aims: (1) Determine the extent to which PI3K signaling can be modulated
by experimental manipulation of PI(4,5)P2 homeostasis. We hypothesize that elevated PI(4,5)P2 homeostasis
via modulation of PIP5K-PIP4K-PI(4,5)P2 interactions will produce corresponding changes in PI3K signaling
output. We will change the expression level and localization of endogenous PIP4K and PIP5K in 293A cells, and
determine PI3K signaling using direct measures (PIP3 production and Akt phosphorylation). (2) Identify how
changes in PIP5K1A expression in cancer cell lines activates PI3K signaling and drive proliferation. We will test
the hypothesis that PIP5K1A overexpression in cancer cells upregulates PI3K signaling and proliferation. We
will over-express PIP5K1A in non-transformed and diploid cells, as well as reducing expression in cell lines with
PIP5K1A amplification. PI3K signaling will be determined as in aim 1, along with proliferation. Upon the
completion of this project, we expect to find that elevated PI(4,5)P2 homeostasis enhances PI3K activity;
moreover, we will show that this elevated homeostasis manifests in cancer cells with PIP5K1A amplification,
causing increased oncogenic PI3K signaling and proliferation. This finding will be significant, because it will
identify PIP5K1A as both a novel marker of enhanced PI3K signaling, and as a promising new target to inhibit
PI3K signaling in tumors. We believe our approach is innovative, because it considers the homeostatic
mechanism regulating PI(4,5)P2 synthesis, rather than just exploring the isolated catalytic function of PIP5Ks.
Public Health Relevance Statement
PROJECT NARRATIVE
We expect to find that disrupted PI(4,5)P2 homeostasis increases PI3K signaling, and that this occurs in
cancer cells with elevated PIP5K1A expression, driving proliferation. This would reveal PIP5K1A as a potential
novel target for disrupting PI3K signaling in cancer, and conversely, reveal PI3K signaling as a potential target
in tumors with elevated PIP5K1A levels. This knowledge will be the crucial foundation for future structure-
function analysis of the tripartite interactions between PIP5K, PIP4K and PI(4,5)P2; this in turn will direct future
drug discovery efforts for this target – a major aim of the Illuminating the Druggable genome consortium.
No Sub Projects information available for 1R03TR003624-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R03TR003624-01
Patents
No Patents information available for 1R03TR003624-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R03TR003624-01
Clinical Studies
No Clinical Studies information available for 1R03TR003624-01
News and More
Related News Releases
No news release information available for 1R03TR003624-01
History
No Historical information available for 1R03TR003624-01
Similar Projects
No Similar Projects information available for 1R03TR003624-01