Awardee OrganizationUT SOUTHWESTERN MEDICAL CENTER
Description
Abstract Text
ABSTRACT
Most cancer deaths are caused by distant metastasis. Yet the mechanisms that regulate distant metastasis are
poorly understood. Metastasis is a very inefficient process in which few disseminated cancer cells survive, and
even fewer proliferate, but it is not known why. We developed a patient-derived xenograft (PDX) assay in
which melanomas engraft very efficiently and spontaneously metastasize. Using this assay, we discovered
intrinsic differences in metastatic potential among melanomas from different patients. Some stage III
melanomas are “efficient metastasizers” that spontaneously form distant metastases in patients and in NSG
mice while others are “inefficient metastasizers” that do not form distant macrometastases in patients or in
NSG mice under the same experimental conditions. Using this assay, we discovered that melanoma cells
experience a spike in reactive oxygen species (ROS) during metastasis and that distant metastasis is limited
by oxidative stress. Successfully metastasizing cells undergo reversible metabolic changes during metastasis
that increase their capacity to withstand oxidative stress, including increased folate pathway dependence.
However, the mechanisms that confer differences in metastatic potential upon melanomas from different
patients have not yet been identified. We hypothesize that efficiently and inefficiently metastasizing melanomas
have intrinsic metabolic differences that reduce oxidative stress in efficient metastasizers. One impediment to
testing this hypothesis is that melanomas from patients grow poorly at clonal density in known culture
conditions, preventing certain approaches for studying cancer metabolism and the use of CRISPR gene editing
(because single cell-derived clones could not be screened or expanded). We spent years developing a culture
medium in which single melanoma cells from patients form tumor organoids (PDOs). This capability raises the
general question of whether metabolism and oxidative stress resistance are regulated similarly in PDXs and in
PDOs. To address this question, we will compare, side-by-side, the biological properties and metabolic
regulation of efficient and inefficient metastasizers in PDXs and PDOs. We will test if efficiently metastasizing
melanomas have lower ROS levels or markers of oxidative stress, or increased use of the folate or pentose
phosphate pathways, as compared to inefficient metastasizers, and whether this promotes metastasis in PDXs
or migration/invasion in PDOs. We will also test if MCT1, a lactate transporter, promotes metastasis and
whether efficient metastasizers reduce oxidative stress partly through lactate exchange. Finally, we will test if
there are intrinsic differences in mitochondrial function between efficient and inefficient metastasizers that
reduce ROS generation. By comparing the biological properties and metabolic regulation of each melanoma in
PDX and PDO assays, we will assess the strengths and weaknesses of PDX and PDO assays for studying
cancer metabolism and biological differences among patients. These results have the potential to identify new
mechanisms that regulate metastasis, new aspects of cancer metabolism, and strategies to block progression.
Public Health Relevance Statement
Narrative
We hypothesize that melanomas from different patients have intrinsic metabolic differences that confer
differences in metastatic potential by regulating the generation of reactive oxygen species or the capacity
to buffer oxidative stress. We will test this using patient-derived xenografts and organoids, comparing the
ability of these assays to modeling biological differences among melanomas.
No Sub Projects information available for 5U01CA228608-04
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5U01CA228608-04
Patents
No Patents information available for 5U01CA228608-04
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5U01CA228608-04
Clinical Studies
No Clinical Studies information available for 5U01CA228608-04
News and More
Related News Releases
No news release information available for 5U01CA228608-04
History
No Historical information available for 5U01CA228608-04
Similar Projects
No Similar Projects information available for 5U01CA228608-04