Awardee OrganizationWM S. MIDDLETON MEMORIAL VETERANS HOSP
Description
Abstract Text
Ongoing research in my laboratory is focused on three broad areas: 1) understanding the molecular
mechanisms that drive melanoma tumor development and progression, 2) defining the role of skin
microenvironment on melanomagenesis, and 3) identifying prognostic biomarkers for patients diagnosed with
early-stage melanoma. The goal of the research project #1, which is funded by VA BLR&D Merit Review Award,
is to understand the role of EPACs, proteins that mediate the alternative cAMP signaling, in promoting the growth
of primary melanoma and the mechanism involved in metabolic adaptation that abolishes EPAC dependency
during tumor progression. We are exploring inhibition of EPAC signaling in primary melanoma and restoration of
EPAC dependency in metastatic melanoma as strategies, respectively, for prevention and treatment of
melanoma in Veterans as well as general population. In project #2, we are modeling melanomagenesis using
human skin-on-a-chip. The rationale for this project is that while genetically modified mouse models and human
melanoma cell lines models in vitro are useful, they do not fully mimic the complex interactions that occur during
melanomagenesis in the intact human skin microenvironment. The goal of the DoD Peer Reviewed Medical
Research Program-funded research is to understand the role of epidermal keratinocytes and dermal fibroblasts
in melanomagenesis to devise strategies for melanoma prevention in active service members and Veterans with
increased risk of melanoma. These research projects with in-depth focus on cell and molecular aspects of
melanoma also involve translational research using retrospective analysis of fixed and paraffin embedded human
primary melanoma tumor tissues. The major focus of my future research is to translate our findings in prospective
investigations in Veterans diagnosed with early-stage cutaneous melanoma.
Recently, a collaboration with Drs. Gunasekaran and Jose Ayuso, biomedical engineers with expertise in
biosensors and microfluidic technology, respectively, allowed us to develop a sensitive biosensor that we
propose to employ for prospective studies targeted to detection of circulating melanoma cells in Veteran
diagnosed with early-stage melanoma. In proof-of-principle studies, we showed selective and sensitive detection
of cells in patient blood. We show that this immunosensor is readily adaptable, in an arrayed format, for
simultaneous detection of multiple biomarkers and can be incorporated into a microfluidic device and multiplexed
to identify and capture subsets of CTC based on their cell surface markers for phenotypic and molecular
characterization. The goal of project #3 is to identify and characterize circulating tumor cells (CTC) in the
peripheral blood as indicators of risk of metastatic melanoma and residual disease. The proposed specific aims
of this project are a) detection and capture of melanoma cells based on surface marker heterogeneity, b)
detection and characterization of CTC heterogeneity using multiplexed microfluidic immuno-sensor array and c)
phenotypic and molecular characterization of CTC. These studies will be supported by VA CSR&D Merit Review
Award application selected for funding.
During the Research Career Scientist Award period, I plan to integrate our understanding of molecular
mechanisms in melanoma progression with prospective studies that often require long-term monitoring of the
patients. I plan to leverage the microfluidic platform to develop human skin-on-chip to investigate the relationship
between environmental factors and risk of melanoma in Veterans. More importantly, the Research Career
Scientist Award support will allow us to collect the critical additional data to support my next round of Merit
Review application by going beyond detection of circulating melanoma cells to leverage the liquid biopsy for
monitoring risk of metastatic melanoma in Veterans.
Public Health Relevance Statement
Despite the recent breakthroughs in treatment of melanoma, there are still no durable treatments for this
cancer. There is a clear and immediate need to explore and find novel avenues to diagnose and treat
melanoma in its early stages and prevent its progression to deadly metastatic cancer. Excessive exposure to
ultraviolet radiation, as experienced by many US military personnel serving outdoors and on high seas in
tropical and subtropical zones, poses a significant risk of developing melanoma, which might manifests after
many years after active service. Once diagnosed with cutaneous melanoma, management of the Veterans’
treatment is dictated by the clinical staging of the disease. The focus of my research program is to study the
molecular mechanisms involved in primary melanoma tumor growth and metastasis and to develop methods to
determine the risk of developing deadly metastatic diseases. This research has the potential to yield new
knowledge that will impact the management of Veterans diagnosed with melanoma.
NIH Spending Category
No NIH Spending Category available.
Project Terms
AgreementAircraftAmericanAreaArthritisAwardBiological MarkersBiomedical EngineeringBiosensorBiotechnologyBloodBook ChaptersCell LineCell surfaceCellsCellular biologyClinicalCollaborationsComplexCongressesConnective TissueCountryCutaneous MelanomaCyclic AMPDataDependenceDermalDermatologyDetectionDevelopmentDevicesDiagnosisDiseaseDisseminated Malignant NeoplasmEarly DiagnosisEarly treatmentEngineeringEnvironmental Risk FactorEtiologyExerciseExposure toFacultyFibroblastsFundingFunding AgencyGeneral PopulationGoalsGrant ReviewGrowthHeterogeneityHourHumanImmunotherapyIncidenceIndustryInternationalInvestigationJournalsKnowledgeLab On A ChipLaboratoriesLeadershipLegal patentLicensingMalignant NeoplasmsMediatingMedical ResearchMedical SurveillanceMedicineMelanoma CellMentorsMetabolicMetastatic MelanomaMethodsMicrofluidic MicrochipsMicrofluidicsMilitary PersonnelModelingMolecularMonitorNeoplasm Circulating CellsNeoplasm MetastasisOccupationsParaffin EmbeddingPatient MonitoringPatientsPeer ReviewPhenotypePigmentsPositioning AttributePostdoctoral FellowPreventionPrognostic MarkerProspective StudiesProteinsRecording of previous eventsReportingResearchResearch PersonnelResearch Project GrantsResidual NeoplasmRiskRoleScientistSeaSignal TransductionSkinSkin CancerSocietiesSolar EnergyStagingStudy SectionSurfaceTrainingTranslatingTranslational ResearchTumor Cell BiologyTumor TissueTumor-DerivedUV Radiation ExposureUltraviolet RaysUnited States National Academy of SciencesUnited States National Institutes of HealthUniversitiesVeteransWingactive dutyanticancer researchcancer diagnosiscancer therapycareerchemotherapycombateditorialexperienceimprovedin vitro Modelindexingkeratinocyteliquid biopsymacromoleculemelanomamelanomagenesismembermicrofluidic technologymortalitymouse modelnoveloperationpatient biomarkersperipheral bloodphenotypic biomarkerpreventprogramsprospectiveresponserestorationservice membertherapy resistanttrendtumortumor growthtumor progressionundergraduate student
No Sub Projects information available for 1IK6BX006317-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1IK6BX006317-01
Patents
No Patents information available for 1IK6BX006317-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1IK6BX006317-01
Clinical Studies
No Clinical Studies information available for 1IK6BX006317-01
News and More
Related News Releases
No news release information available for 1IK6BX006317-01
History
No Historical information available for 1IK6BX006317-01
Similar Projects
No Similar Projects information available for 1IK6BX006317-01