Interrogating the role of arachidonic acid metabolism in modulating the tumor immune microenvironment as a novel path to therapeutic intervention
Project Number1U01CA293474-01
Contact PI/Project LeaderYEATMAN, TIMOTHY J Other PIs
Awardee OrganizationUNIVERSITY OF SOUTH FLORIDA
Description
Abstract Text
ABSTRACT
Cancer has been characterized as a chronic, poorly healing wound where inflammatory and proliferative
processes continue unchecked without normal healing and resolution of inflammation. In one sense, cancer
represents an imbalance of pro-inflammatory over pro-resolving processes. In colorectal cancer (CRC), we
propose this pro-inflammatory imbalance may be driven by arachidonic acid (AA)-rich Western diets and
associated downstream lipid metabolism. The role of AA in cancer development and progression, however, is
still controversial when in vitro, in vivo, and human data are considered. Our preliminary LC-MS/MS data
suggest a disordered lipoxygenase pathway CRC lipid metabolism, where AA, its derivatives (e.g, LTB4, 5-
HETE), and principal genes (e.g., ALOX5, ALOX5AP) are largely over-expressed in tumor vs. normal samples.
Recent in vivo murine data suggest dead cancer cell membranes (apoptotic debris), commonly generated from
rapidly growing or treated tumors, may be the main source of AA that promotes tumor growth. Surprisingly,
single cell RNASEQ data suggest the majority of AA lipid modulating genes are expressed in the immune cells
of the tumor microenvironment (TME) rather than in the tumor cells themselves, suggesting a role for AA in
regulating the immune TME. Moreover, our preliminary analysis of > 2000 CRCs suggest the immune activity
of the TME is a strong predictor of long-term CRC survival. The recent proliferation of checkpoint inhibitors has
fully demonstrated the potential to modulate the TME to enable cancer cures. Understanding precisely how
disordered AA lipid metabolism impacts the immunity of the CRC TME is thus a critical unmet need that could
lead to novel therapeutic approaches for CRC based on lipid metabolism and signaling. Here we propose to:
1) add a novel feature of quantified AA pathway lipid mediators to a large “reference” set of human highly
clinically- and molecularly curated CRCs. We will determine their ability to distinguish, and possibly refine,
subclasses defined by: a) consensus molecular subtyping (CMS) with enriched vs. diminished immune TMEs;
b) TME immune activation scores; c) CRC genotypes; 2) assess the effect of AA-based pro-inflammatory vs.
pro-resolution mediators on paired, isogeneic patient derived organoids (PDOs), with and without intact
immune TMEs, to clarify mechanisms of action; 3) define the role of AA and ALOX5 in tumor growth and
metastatic progression in a murine, syngeneic CRC orthotopic model. We will anchor the experimental plan on
AA supplementation resembling the Western diet in order to demonstrate its inflammatory effects on CRC.
These aims will decipher the potential of regulating AA and its lipid derivatives as a novel therapeutic approach
to enhance the immune activity of the TME.
Public Health Relevance Statement
PROJECT NARRATIVE
In one sense, cancer represents an imbalance between pro-inflammatory and pro-resolving processes that
promote tumor growth and suppress the immunity of the tumor microenvironment (TME). Here, we plan to
understand how AA-rich Western diets are metabolized by ALOX5 and related genes that regulate the TME.
These studies will lead to new therapeutic approaches to CRC through modulation of lipid-signaling in the TME.
No Sub Projects information available for 1U01CA293474-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1U01CA293474-01
Patents
No Patents information available for 1U01CA293474-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1U01CA293474-01
Clinical Studies
No Clinical Studies information available for 1U01CA293474-01
News and More
Related News Releases
No news release information available for 1U01CA293474-01
History
No Historical information available for 1U01CA293474-01
Similar Projects
No Similar Projects information available for 1U01CA293474-01