STUCTURE-FUNCTION RELATIONSHIPS OF IMMUNORECEPTORS
Project Number5R01AI018306-18
Contact PI/Project LeaderBAIRD, BARBARA A
Awardee OrganizationCORNELL UNIVERSITY
Description
Abstract Text
The multi-chain immune recognition receptors (MIRR) which mediate cell activation in the immune response include T cell receptors for antigen, B cell receptors, and Fc receptors. The structural basis for MIRR function at the plasma membrane will be investigated, using as a paradigm the high affinity Fc receptor (FcepsilonRI) for immunoglobulin E (IgE) which plays a central role in the allergic immune response. Proposed studies will focus on plasma membrane heterogeneity, dynamics and structure as these are involved in IgE-FcepsilonRI signaling, and in particular on the role liquid-ordered, detergent-resistant regions play in the initial coupling between FcepsilonRI and Lyn tyrosine kinase. Specific aim 1 will examine features of FcepsilonRI structure that are critical for its interaction with detergent resistant membranes, using several different chimeric receptors, together with site-specific mutagenesis and cholesterol photoaffinity labeling studies. Specific aim 2 will apply advanced biophysical methods including quantitative fluorescence microscopy, electron spin resonance and mass spectrometry to characterize these cholesterol-dependent, detergent-resistant regions in plasma membranes of whole cells and sub-cellular preparations; structural changes that occur as a result of cell activation will be investigated. For example, real time interactions between Lyn anchored to the inner leaflet of the plasma membrane and antigen-aggregated FcepsilonRI will be monitored on intact cells using green fluorescent protein-conjugated analogues to detect proximity changes with fluorescence resonance energy transfer and mobility changes with fluorescence correlation spectroscopy and imaging. The structural basis for the interaction of F- actin with the plasma membrane and its regulation of FcepsilonRI signaling will also be investigated. These studies will test te general hypothesis that structural organization at the plasma membrane is important for receptor-mediated signaling in the immune response.
National Institute of Allergy and Infectious Diseases
CFDA Code
855
DUNS Number
872612445
UEI
G56PUALJ3KT5
CCV3WG2JG248
D4H1NV4APKP3
ELS2M3C6V2S5
EQA8NBEN9WD5
FFAZGE9NH3M8
K6JRCJJXFET1
M8FBSLHASMT3
P4LRVQT1H4K5
PJUVN8AT5416
RT1JPM9UMGM5
ZBMGUAZYFGC4
ZMP8BDLJTUW9
Project Start Date
01-August-1981
Project End Date
28-February-2005
Budget Start Date
01-March-2001
Budget End Date
28-February-2002
Project Funding Information for 2001
Total Funding
$271,848
Direct Costs
$181,330
Indirect Costs
$90,518
Year
Funding IC
FY Total Cost by IC
2001
National Institute of Allergy and Infectious Diseases
$271,848
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 5R01AI018306-18
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01AI018306-18
Patents
No Patents information available for 5R01AI018306-18
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01AI018306-18
Clinical Studies
No Clinical Studies information available for 5R01AI018306-18
News and More
Related News Releases
No news release information available for 5R01AI018306-18
History
No Historical information available for 5R01AI018306-18
Similar Projects
No Similar Projects information available for 5R01AI018306-18