Awardee OrganizationUNIVERSITY OF CALIFORNIA, SAN DIEGO
Description
Abstract Text
Soils and waters with high levels of toxic metals such as cadmium (Cd), arsenic (As), lead (Pb) and mercury (Hg) are detrimental to human and environmental health. These four metals are among the Superfund;'s top five priority hazardous substances. Studies suggest that uptake of heavy metals into plant via the root system could provide a potent and cost effective approach for toxic metal removal and remediation of soils and waters. In plants and fungi, phytochelatins are major heavy metal chelating and detoxifying thiolate peptides, that form complexes with and detoxify heavy metals, including Cd, Zn, Pb, Hg and based on recent research also As. The enzyme phytochelatin synthase (PCS) produces phytochelatin, thus functioning as a major catalytic metal detoxification mechanisms in plants. However genes encoding phytochelatin synthases, had not yet been identified. We have recently cloned a new gene family (PCS) encoding phytochelatin synthases in plants and fungi. Expression of PCS cDNAs in S. cerevisiae dramatically enhance resistance to cadmium. Disruption of the PCS genes in S. pombe and Arabidopsis thaliana produces increased heavy metal sensitivity. Recombinant PCS proteins synthesize phytochelatins in vitro. We will test the hypotheses that stress-signaling pathways contribute to PCS induction and detoxification and that transgenic expression of PCS genes can, together with other metal-interacting mechanisms, enhance heavy metal hyper-accumulation and removal by plants. To test these hypotheses we will: (I) Characterize signaling mechanisms that induce PCS expression. (II) Characterize PCS expression and localization in Brassica juncea, which is one of the major plant species being studied for heavy metal biomediation. (III) Pursue transgenic over-expression in plants of PCS together with associated metal detoxification mechanisms to test for enhanced heavy metal tolerance and accumulation and (IV) provide selected transgenic lines to Phytotech Inc to include in field trials on super fund sites. (V) Pursue novel genetic activation-tagging screens in Arabidopsis and Cd-induced microarray analyses to identify new genes and pathways involved in heavy metal accumulation in plants. Results from these studies could play a central role in the development of future phytoremediation strategies for heavy metal uptake and biological removal of heavy metals form contaminated soils and waters.
National Institute of Environmental Health Sciences
CFDA Code
DUNS Number
804355790
UEI
UYTTZT6G9DT1
Project Start Date
01-April-2002
Project End Date
31-March-2003
Budget Start Date
Budget End Date
Project Funding Information for 2002
Total Funding
$175,014
Direct Costs
$175,014
Indirect Costs
Year
Funding IC
FY Total Cost by IC
2002
National Institute of Environmental Health Sciences
$175,014
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 5P42ES010337-03 0008
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P42ES010337-03 0008
Patents
No Patents information available for 5P42ES010337-03 0008
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P42ES010337-03 0008
Clinical Studies
No Clinical Studies information available for 5P42ES010337-03 0008
News and More
Related News Releases
No news release information available for 5P42ES010337-03 0008
History
No Historical information available for 5P42ES010337-03 0008
Similar Projects
No Similar Projects information available for 5P42ES010337-03 0008