Contact PI/Project LeaderLEDERER, WILLIAM JONATHAN
Awardee OrganizationCOLUMBIA UNIVERSITY HEALTH SCIENCES
Description
Abstract Text
Cardiac arrhythmias are a leading cause of death in humans and occur in diverse conditions. The proposed research seeks to identify and characterize fundamental mechanisms that underlie fatal cardiac arrhythmias. Specific cellular and molecular events that trigger arrhythmias will be examined to test the hypothesis that changes in subcellular calcium signaling contribute to arrhythmogenesis. Animal models of altered electrical activity in the heart will be studied at the single cells level using whole patch clamp methods and confocal calcium imaging. Isolated cardiac myocytes from control and transgenic animals and cells expressing specific constructs will be used in the planned work. Preliminary results have demonstrated calcium-dependent links between altered electrical behavior and the expression of specific cellular proteins that are being examined in Project 1 (Russo), Project 2 (Marks) and Project 3 (Kass). The proteins of particular interest include beta1AR, beta2AR, RyR2, FKB12, FKBP12.6, SCN5A and mutations of these proteins. The proposed work examines how expression of the target proteins affects intracellular [Ca2+]i and also Ca2+-dependent membrane currents. This examination will explore the importance of the action potential shape and duration on [Ca2+]i signaling in the proposed experimental models. Additionally the relationship between SR Ca2+ content and Ca2+ release (as measured by Ca2+ sparks and the global (Ca2+) transient) will be examined with these molecular models. The experiments carried out in this project should thus provide fundamental new information on the arrhythmogenic roles played by the betaAR signaling system, sarcolemmal ion channels and the intracellular Ca2+ release channels.
No Sub Projects information available for 5P01HL067849-02 0004
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P01HL067849-02 0004
Patents
No Patents information available for 5P01HL067849-02 0004
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P01HL067849-02 0004
Clinical Studies
No Clinical Studies information available for 5P01HL067849-02 0004
News and More
Related News Releases
No news release information available for 5P01HL067849-02 0004
History
No Historical information available for 5P01HL067849-02 0004
Similar Projects
No Similar Projects information available for 5P01HL067849-02 0004