The genetics of folate and vitamin B12 metabolism relate
Project Number1Z01HG000167-05
Contact PI/Project LeaderBRODY, LAWRENCE
Awardee OrganizationNATIONAL HUMAN GENOME RESEARCH INSTITUTE
Description
Abstract Text
Research in the Molecular Pathogenesis is focused on defining changes in the genes that underlie inherited susceptibilities to common diseases such as cancer and birth defects. Changes in folate metabolism are correlated tumor formation and birth defects. Folate genes are also involved in the methylation of DNA and proper brain function. . We are searching for genetic variants in genes related to folate, methionine and homocysteine metabolism. Individuals affected with cancer or Spina Bifida (one form of neural tube defects) will be tested for these variants. Variants found at higher frequency in individuals with disease will help us identify genes associated with risk. In the past year we have tested more than 15 genes for variants that might perturb folate metabolism and therefore be associated with an increase risk of having a child with an neural tube defect. We found that variants in one of these genes, TC2, appear to affect the levels of vitamin B12 in the blood during pregnancy. This finding may be related to birth defects and also may help to explain why some elderly individuals become anemic and suffer neurological symptoms from vitamin B12 deficiency. We also found that mothers carrying a specific variant in a second gene, MTHFD1, have a 50% increased risk bearing a child with a neural tube defect. This previously un-described variant may be responsible for up to 25% of all neural tube defects. Approximately one in five individuals in the population carry one of these risk factors. We recently determined that this particular variant was also an risk factor for placental abruption a common cuase of miscarriage. We have re-created these genes in the laboratory and are currently using an experimental system to determine exactly how these variants alter the function of these proteins. A detailed knowledge of the function of these two genes will add to our understanding of neural tube defects and potentially help guide public health policy in the area of nutritional supplementation.
No Sub Projects information available for 1Z01HG000167-05
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1Z01HG000167-05
Patents
No Patents information available for 1Z01HG000167-05
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1Z01HG000167-05
Clinical Studies
No Clinical Studies information available for 1Z01HG000167-05
News and More
Related News Releases
No news release information available for 1Z01HG000167-05
History
No Historical information available for 1Z01HG000167-05
Similar Projects
No Similar Projects information available for 1Z01HG000167-05