Genetic Dissection of Sickle Cell Anemia Phenotypes
Project Number5R21HL080463-02
Contact PI/Project LeaderSEBASTIANI, PAOLA
Awardee OrganizationBOSTON UNIVERSITY MEDICAL CAMPUS
Description
Abstract Text
DESCRIPTION (provided by applicant): Sickle cell anemia is a paradigmatic single gene disorder caused by homozygosity for a unique mutation on the beta-globin locus producing the abnormal sickle hemoglobin (HbS). Phenotypically, sickle cell anemia is a complex disease with different clinical courses ranging from early childhood mortality to virtually unrecognized conditions. Damaged red cells initiate hemolysis, vaso-occlusion and the vascular pathology of sickle cell disease. Vaso-occlusion injures vital tissues causing pain and impairing function. Death is premature and life can be oppressive. Supported by the NIH/NHLBI R01 HL68970 "Genetic modulation of sickle cell anemia", in 2001 Dr Steinberg initiated a genome scan study to understand the genetic basis of the major sickle cell anemia phenotypes. This study has led so far to the discovery of several genes that are associated with individual phenotypes of sickle cell anemia, and more than one phenotype appears to be associated with the same genetic variants. These findings support the hypotheses that clinical heterogeneity in sickle cell disease, as in other "single gene" Mendelian disorders, must be caused by the genetic variability in genes that influence the occurrence of defined phenotypes. This variability may be also modulated by other clinical conditions, and some of the sub-phenotypes of sickle cell anemia may have common genetics bases. To model these relationships and to allow ultimately the use of these discoveries as prognostic and therapeutic models, we are developing new computational methods for learning about simultaneous gene-phenotypes associations based on multivariate dependency models. In this project, we propose to use these new modeling techniques for the simultaneous discovery of the genetic basis of several sickle cell anemia phenotypes, and to use the discovered associations for prognosis of the risk of complications in sickle cell anemia patients.
No Sub Projects information available for 5R21HL080463-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R21HL080463-02
Patents
No Patents information available for 5R21HL080463-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R21HL080463-02
Clinical Studies
No Clinical Studies information available for 5R21HL080463-02
News and More
Related News Releases
No news release information available for 5R21HL080463-02
History
No Historical information available for 5R21HL080463-02
Similar Projects
No Similar Projects information available for 5R21HL080463-02