DESCRIPTION (provided by applicant): Each year a significant number of epilepsy patients present to the Yale Epilepsy Center with highly debilitating intractable epilepsy. When epilepsy is refractory to drug therapy, the best outcome occurs if the epileptogenic tissue is removed surgically. However, this approach to curing epilepsy is only effective if the epileptogenic tissue is limited in extent (focal) and identifiable. Many of these patients have no abnormalities visible on MR, PET, or SPECT scanning, or they have discordant findings across several measures, making localization of the epileptogenic tissue that generates the seizures difficult. This proposal is aimed at further developing and understanding combined electroencephalography and functional magnetic resonance imaging (EEG-fMRI). In this approach, EEG monitoring is performed during a functional MRI scanning session. A number of functional imaging approaches including, blood oxygenation level dependent (BOLD) contrast, cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2)) will be investigated to identify local tissue regions that exhibit signal changes in synchrony with interictal epileptiform discharges (lEDs). The experiments are designed to improve our understanding of the relationship between MR measures of neuronal activity in the presence of epileptiform activity, and neuronal signatures of activity based on surface or depth recorded EEG. Characteristics of the measured response (peak integration, time-to-peak, amplitude, and duration) for specific tissues will be compared in an F-test with type of epilepsy and concordance with difference SPECT and intracranial recordings. In addition, the EEG-fMRI localization will be directly compared spatially, with the epileptogenic tissue localization obtained using difference SPECT imaging, and with the clinical gold standard of invasive recordings from intracranial implanted electrodes, and finally with surgical outcome. Little is currently known about the neurophysiological response to lEDs, the relationship between EEG and fMRI measures, nor of the relationship between this inter-ictal and ictal activity. The experiments proposed in this work will provide a better understanding of these issues at a basic neuroscience level, while also allowing validation through invasive monitoring. These developments will improve the efficacy of seizure localization, allow for more precise targeting of surgical interventions through better localization, and improve outcomes from surgery. A large epilepsy population exists that could benefit greatly from better mapping techniques and these techniques may ultimately replace invasive methods decreasing health care costs and morbidity.
National Institute of Neurological Disorders and Stroke
CFDA Code
853
DUNS Number
043207562
UEI
FL6GV84CKN57
Project Start Date
01-July-2005
Project End Date
30-June-2009
Budget Start Date
01-July-2006
Budget End Date
30-June-2007
Project Funding Information for 2006
Total Funding
$369,209
Direct Costs
$225,816
Indirect Costs
$143,393
Year
Funding IC
FY Total Cost by IC
2006
National Institute of Neurological Disorders and Stroke
$369,209
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 5R01NS047605-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01NS047605-02
Patents
No Patents information available for 5R01NS047605-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01NS047605-02
Clinical Studies
No Clinical Studies information available for 5R01NS047605-02
News and More
Related News Releases
No news release information available for 5R01NS047605-02
History
No Historical information available for 5R01NS047605-02
Similar Projects
No Similar Projects information available for 5R01NS047605-02