Awardee OrganizationUNIVERSITY OF ALABAMA AT BIRMINGHAM
Description
Abstract Text
DESCRIPTION (provided by applicant):
The laboratory has shown that protein modification with O-linked N-acetylglucosamine (O-GlcNAc) plays a direct role in the function of transcriptional activators and repressors. This modification, which results from glucose metabolism, also modulates the function of the proteasome, the major organelle involved in intracellular degradation of proteins. The chymotryptic activity of 26S proteasomes, but not 20S proteasomes against 4 amino acid peptides (LLVY) is blocked by incubation of the proteasome with O-GlcNAc transferase (OGT). In addition, the ATPase activity of intact proteasomes is blocked by OGT. Physiologically inactivated proteasomes from NRK cells treated with high glucose or glucosamine can be reactivated by recombinant O-GlcNAcase, the enzyme that removes this modification. Labeling studies on purified proteasomes with [3H]-GlcNAc indicate that the modified protein(s) have a molecular mass of about 45 kDa and that this substrate resides in the 19S regulatory cap of the proteasome. Since the proteasome degrades pro-apoptotic factors such as p53 and many of its downstream targets, inhibition of proteasome function might lead to the accumulation of these factors with the induction of apoptosis. The chemotherapeutic agent and GlcNAc analog, streptozotocin, also induces apoptosis through its property as a non-competitive inhibitor of the O-GlcNAcase. The proposed studies are designed to determine the biochemical linkage between the O-GlcNAc pathway and the proteasome. The ability of O-GlcNAc to block proteasomal function may also couple glucose metabolism to amino acid release from muscle wasting. The specific aims are as follows: General goal: Determine the role of O-GlcNAc in proteasomal function. 1. Determine the effect of O-GlcNAc transferase (OGT) and O-GlcNAcase on proteasome function in vitro using these enzymes to reversibly modify proteins in the proteasome in vitro. 2. Identify proteasomeassociated protein(s) that contain the O-GlcNAc modification and regulate proteasome function in a reversible manner. 3. Determine how O-GlcNAcylation of the proteasome 19S regulatory subunit modifies the function of the proteasomal peptidase and ATPases. 4. Using transgenic mice, determine the effect of proteasome blockade in vivo on epithelial cell apoptosis and muscle protein wasting.
Public Health Relevance Statement
Data not available.
NIH Spending Category
No NIH Spending Category available.
Project Terms
N acetylglucosamineacylationadenosinetriphosphataseapoptosisenzyme mechanismepitheliumgenetically modified animalsglycosyltransferaselaboratory mousematrix assisted laser desorption ionizationpeptidasesproteasomeprotein structureyeast two hybrid system
No Sub Projects information available for 5R01CA095021-04
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01CA095021-04
Patents
No Patents information available for 5R01CA095021-04
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01CA095021-04
Clinical Studies
No Clinical Studies information available for 5R01CA095021-04
News and More
Related News Releases
No news release information available for 5R01CA095021-04
History
No Historical information available for 5R01CA095021-04
Similar Projects
No Similar Projects information available for 5R01CA095021-04