Awardee OrganizationMOUNT DESERT ISLAND BIOLOGICAL LAB
Description
Abstract Text
DESCRIPTION (provided by applicant): Runt domain (Runx) transcription factors are key regulators of animal development. Each of the three mammalian Runx genes is required for the development of a major organ system, and in humans all three are associated with disease caused by uncontrolled cell proliferation. RUNXl is required for definitive hematopoiesis, and is the most frequently mutated gene in human leukemia; RUNX2 is required for osteogenesis, and its haploinsufficiency causes cleidocranial dysplasia; and RUNX3 is required for neural development in the dorsal root ganglia and for control of cell proliferation in the developing stomach, and is frequently deleted or silenced in human stomach cancer. The purpose of this grant is to define the molecular mechanisms through which Runx proteins control cell proliferation during development. Toward this end we are using sea urchin embryogenesis as a simplified model system. Unlike mammals, which have 3 Runx genes, the sea urchin Strongylocentrotus purpuratus has only a single Runx gene (SpRunt). As is the case with other Runx proteins, SpRunt forms a heterodimer with a beta subunit (SpCBFbeta). Our preliminary data show that SpRunt is required for the normal program of cell proliferation during embryogenesis and for the transcriptional activation of cyclin D. The specific aims of this grant are: (1) to further define the roles of SpRunt in cell proliferation; (2) to determine how SpRunt functions within the context of the cyclinD cis-regulatory system; and (3) to investigate how SpRunt activity is developmentally regulated by its heterodimeric partner, SpCBFbeta. These aims will be achieved by exploiting the strengths of the sea urchin embryo as a system for biochemical and molecular analyses of cell physiology, gene regulation, and development, and the availability of the S. purpuratus genome sequence, which will greatly facilitate both the cis-regulatory analysis of genes and the identification of purified proteins by mass spectrometry.
No Sub Projects information available for 7R01GM070840-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 7R01GM070840-02
Patents
No Patents information available for 7R01GM070840-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 7R01GM070840-02
Clinical Studies
No Clinical Studies information available for 7R01GM070840-02
News and More
Related News Releases
No news release information available for 7R01GM070840-02
History
No Historical information available for 7R01GM070840-02
Similar Projects
No Similar Projects information available for 7R01GM070840-02