Awardee OrganizationUNIVERSITY OF CALIFORNIA-IRVINE
Description
Abstract Text
DESCRIPTION (provided by applicant):
The Laser Microbeam and Medical Program (LAMMP) is a NIH Biomedical Technology Resource Center dedicated to the use of lasers and optics in biology and medicine. LAMMP is located within the Beckman Laser Institute (BLI), an interdisciplinary biomedical research, teaching, and clinical facility at the University of California, Irvine. The BLI functions administratively as a division within the Department of Surgery in the Medical School at UC Irvine. Overall resource objectives are to promote a well-balanced Center with activities in technological research and development, collaborative/service research, and training/dissemination. In this fifth renewal application of LAMMP, we emphasize our unique capabilities to facilitate "translational" research by rapidly moving basic science and technology discoveries from "benchtop to bedside". This is accomplished by combining state of the art optical technologies with our in-house facilities in cellular and tissue engineering, animal models, and human subjects. LAMMP provides both Microbeam and Microscopy Technologies (MMT) for optical manipulation and functional imaging of living cells and tissues, and Medical Translational Technologies (MTT) for monitoring, treating, and imaging pre-clinical animal models and human subjects. A total of six new technology research and development projects are proposed that will result in the construction of 5 new, dedicated instruments. MMT and MTr technologies am linked together by a common set of optical technologies, computational models, data visualization methods, and biomedical applications. Combined, they are capable of characterizing and imaging structure and biochemical composition in tissues with scalable resolution and depth sensitivity ranging from microns to centimeters. This allows selective interrogation of the essential components of tissue: molecules, cells, extracellular matrix, and vasculature. Throughout the grant cycle, we will apply these emerging methods to biological models and clinical problems in order to characterize and quantify the precise structural and functional origins of intrinsic optical signals. Our long-term goal is to advance these technologies so they become widely-available, enabling methods for solving fundamentally important problems in biology and medicine.
No Sub Projects information available for 5P41RR001192-26 0056
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P41RR001192-26 0056
Patents
No Patents information available for 5P41RR001192-26 0056
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P41RR001192-26 0056
Clinical Studies
No Clinical Studies information available for 5P41RR001192-26 0056
News and More
Related News Releases
No news release information available for 5P41RR001192-26 0056
History
No Historical information available for 5P41RR001192-26 0056
Similar Projects
No Similar Projects information available for 5P41RR001192-26 0056