Cav1.2 Transcript Regulation in Heart and Smooth Muscle
Project Number7R01HL073097-03
Former Number1R09HL073097-01
Contact PI/Project LeaderPALADE, PHILIP T.
Awardee OrganizationUNIV OF ARKANSAS FOR MED SCIS
Description
Abstract Text
DESCRIPTION (provided by applicant): A novel first exon for the human cardiac L-type calcium channel has been discovered, bringing to three the number of transcripts found with different 5' ends, each likely regulated by its own promoter. Two of these transcripts are of critical significance, since they account for the majority of transcripts in heart and smooth muscle, respectively. This grant hypothesizes that differential expression of these two principal transcripts in heart and in vascular and visceral smooth muscle not only generates significant differences in channel activity, sensitivity to protein kinase C, and steady-state inactivation but also greater ability to separately regulate expression in the three tissue types. Adrenergic agents are known to transcriptionally upregulate and then downregulate this channel in heart, but equivalent information is lacking for smooth muscle. This grant will test three specific hypotheses: 1) that heterologous expression of the different transcripts in Xenopus oocytes and human cells results in Ca currents with different amplitude, kinetics, open probability, sensitivity to protein kinase C and steady state inactivation properties; 2) that the two principal transcripts are differentially affected in heart and smooth muscle by adrenergic agents; 3) and that there are heart-specific transcription factors that bind to response elements in the heart promoter for the channel, whereas most smooth muscle expression is driven by other transcription factors that bind to response elements in the other principal channel promoter. The results will determine how the different N-termini affect channel properties and how the different transcripts are differentially regulated in vascular smooth muscle as opposed to heart and visceral smooth muscle. They could suggest new targets for pharmaceutical intervention in disorders involving alterations in expression of L-type Ca channels, such as hypertension.
No Sub Projects information available for 7R01HL073097-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 7R01HL073097-03
Patents
No Patents information available for 7R01HL073097-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 7R01HL073097-03
Clinical Studies
No Clinical Studies information available for 7R01HL073097-03
News and More
Related News Releases
No news release information available for 7R01HL073097-03
History
No Historical information available for 7R01HL073097-03
Similar Projects
No Similar Projects information available for 7R01HL073097-03