Awardee OrganizationUNIVERSITY OF CALIFORNIA SANTA CRUZ
Description
Abstract Text
DESCRIPTION (provided by applicant): Pre-mRNA processing is an essential step in eukaryotic gene expression. Constitutive splicing of intervening sequences (introns) from precursors of messenger RNAs (pre-mRNAs) is necessary to establish the correct reading frame for translation. Additionally, alternative inclusion of different coding sequences (exons) from the same transcript places splicing as a pivotal point of gene regulation. Mutations affecting both constitutive and alternative splicing are associated with a number of human diseases, including cancers. The goal of this proposal is to obtain and interpret structural information for the spliceosome, the very large macromolecular machine responsible for splicing catalysis. A three-dimensional (3D) structural understanding of this important molecule will be necessary to elucidate how this dynamic complex is able to precisely recognize very distant splice sites along a pre-mRNA and coordinate intron excision and exon ligation. Because the spliceosome is a dynamic complex composed of five structural RNAs (the U-rich small nuclear U1, U2, U4, U5 and U6 snRNAs) and on the order of 100 proteins, it presents challenges to structural studies. Cryo-electron microscopy (cryo-EM) provides a means to visualize this complicated machine. We will pursue a combination of EM labeling and biochemical characterization of purified splicesomes arrested between the two chemical steps of splicing chemistry to provide an interpretation of the cryo-EM structure. This will allow us to map spliceosome components on the structure to identify the pre-mRNA substrate and active site. These studies will move us closer to defining the mechanisms of splice site identification, spliceosome assembly, and splicing catalysis.
No Sub Projects information available for 5R01GM072649-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01GM072649-02
Patents
No Patents information available for 5R01GM072649-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01GM072649-02
Clinical Studies
No Clinical Studies information available for 5R01GM072649-02
News and More
Related News Releases
No news release information available for 5R01GM072649-02
History
No Historical information available for 5R01GM072649-02
Similar Projects
No Similar Projects information available for 5R01GM072649-02