Awardee OrganizationNEW YORK UNIVERSITY SCHOOL OF MEDICINE
Description
Abstract Text
DESCRIPTION (provided by applicant): The purpose of this research is to study the ontogeny of oculomotor neuron physiology and behavior by exploiting the developmental genetics of zebrafish. To achieve this objective, we will investigate the physiology and genetic specification of four neuronal subtypes that contribute to the production of horizontal and torsional eye movement. The proposed research will focus on quantifiable behaviors and physiological properties of oculomotor neurons and circuits to explore the role of Hox paralog group 4 genes (hoxa4a, Hoxb4a, hoxc4a, hoxd4a) in the patterning and differentiation of three nuclei specific for horizontal eye motion that originate from hindbrain rhombomeres 7 and 8. The first nucleus, PNI, performs a neural integration to provide an eye position signal essential for horizontal fixation and vestibuloocular reflex performance. The second, VNI, encodes eye velocity and provides the major input signal to the vestibulocerebellum, and thus is instrumental in all oculomotor plasticity paradigms. A third nucleus, the inferior olive (IO), provides climbing fiber input to the cerebellum necessary for eye movement stability. In addition, the physiology and development of the tangential nucleus (TAN) will be studied. TAN is responsible for gravitoinertial compensatory eye reflexes and develops in rhombomere 5 under control of Hox paralog group 3 genes. Otolith-induced torsional eye motion will provide an assay for cross-regulatory effects between Hox4 and Hox3 genes. The first aim of the project will characterize the electrophysiology, morphology, and behavior of identified hindbrain oculomotor neurons endogenously labeled with reporter proteins driven by specific Hox gene regulatory sequences. The second aim will use targeted misexpression of each Hox4 paralog to produce changes in neuronal structure / function and eye movements (as documented in Aim 1) to test the contributions of Hox4 genes to specification of PNI, VNI, IO and TAN neurons. The third aim will use perturbation of retinoic acid-sensitive regulatory pathways to manipulate hindbrain segmentation and neuronal specification to identify additional genes required for origin, migration and function of the four oculomotor nuclei. Disruptions in the genetic regulatory cascades specifying these oculomotor subgroups will be directly linked to morphological and electrophysiological alterations in their task specific neural networks as reflected in behavioral sequelae. The overall objective of the proposed work is to analyze oculomotor neurons and behaviors that have been functionally conserved throughout vertebrate evolution to establish a basis for understanding the developmental genetic underpinnings of human oculomotor behavior and eye movement disorders.
No Sub Projects information available for 2R01EY002007-28A1
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 2R01EY002007-28A1
Patents
No Patents information available for 2R01EY002007-28A1
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 2R01EY002007-28A1
Clinical Studies
No Clinical Studies information available for 2R01EY002007-28A1
News and More
Related News Releases
No news release information available for 2R01EY002007-28A1
History
No Historical information available for 2R01EY002007-28A1
Similar Projects
No Similar Projects information available for 2R01EY002007-28A1