DESCRIPTION (provided by applicant): Diseases of bone loss are a major health issue. Despite the wide availability of anti-resorptive drugs, there is a major need for anabolic agents that increase bone formation in patients to treat a variety of clinical pathologies. We have recently shown that Inhibin A, a peptide hormone normally produced by the gonad, increases bone volume and strength in the intact adult murine skeleton, and protects against gonadectomy-induced bone loss. These effects appear to be mediated by a mechanism that increases bone formation, since no changes in osteoclast numbers or systemic markers of bone resorption are observed. This led us to hypothesize that InhA is also anabolic in other models of bone formation, such as distraction osteogenesis (DO), in which InhA effects on osteoblast proliferation and function might be more pronounced. DO is a unique clinical method of bone formation and is considered a variant of fracture healing that stretches the biological repair process to its natural limits. To test our hypothesis, we enlisted the collaboration of our colleague, Dr. James Aronson, an expert in clinical DO and basic studies of DO in rodent models. We believe the cellular organization and isolation of osteoblastogenesis offered by the DO process makes it a uniquely suitable model to gain insight into the mechanistic basis of Inhibin's stimulatory effects on bone formation. Two Aims are proposed to test the hypothesis. Aim 1 will determine if Inhibin A treatment enhances bone formation and stiffness during distraction osteogenesis, using our transgenic model of InhA overexpression in which we have demonstrated bone anabolic effects. MicroCT, radiography and histomorphometry will be used to quantify total and compartment-specific contributions of InhA to the bone formation response. Tensile mechanical testing will be performed to determine stiffness of new bone formed. Aim 2 will determine the cellular and molecular events mediating Inhibin A enhancement of bone formation during the distraction process. Our focus will be to determine if the mechanisms by which InhA increase bone formation are through increasing cell number in the different zones of regenerating tissue and/or increasing the activity of cells in the osteoblastic lineage that are recruited into the process. The resulting data will demonstrate the anabolic action of Inhibin A during DO, and provide insight into the mechanism(s) that may be targeted for future anabolic therapy development to improve fracture healing. Incomplete or delayed fracture healing is major health issue, particularly in the elderly population, and very few treatments are available. We recently showed that treatment of adult mice with the gonadal hormone Inhibin increases bone mass and strength, suggesting it might also enhance bone formation during fracture healing. Our goal is to determine if Inhibin can increase new bone formation during a model of fracture healing known as limb-lengthening or distraction osteogenesis. If Inhibin can increase the amount of bone made during limb- lengthening, it may also have potential development as a therapy for increasing bone formation during fracture healing.
National Institute of Diabetes and Digestive and Kidney Diseases
CFDA Code
847
DUNS Number
122452563
UEI
VDFYLZPJEAV6
Project Start Date
01-July-2007
Project End Date
30-June-2009
Budget Start Date
01-July-2007
Budget End Date
30-June-2008
Project Funding Information for 2007
Total Funding
$216,000
Direct Costs
$150,000
Indirect Costs
$66,000
Year
Funding IC
FY Total Cost by IC
2007
National Institute of Diabetes and Digestive and Kidney Diseases
$216,000
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 1R21DK074024-01A2
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R21DK074024-01A2
Patents
No Patents information available for 1R21DK074024-01A2
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R21DK074024-01A2
Clinical Studies
No Clinical Studies information available for 1R21DK074024-01A2
News and More
Related News Releases
No news release information available for 1R21DK074024-01A2
History
No Historical information available for 1R21DK074024-01A2
Similar Projects
No Similar Projects information available for 1R21DK074024-01A2