Awardee OrganizationUNIVERSITY OF NEBRASKA MEDICAL CENTER
Description
Abstract Text
This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The completion of the sequencing of several different genomes including the human, mouse, and drosophila genomes, has resulted in tremendous opportunities for researchers to make biomedical advances (Waterston et al, 2002; Venter et al, 2001). DNA microarray technology is one of the new technologies that takes advantage of the sequence data and is a powerful highthroughput means to gain crucial insight into both normal and disease-related biological processes (Holloway AJ et al, 2002; Shultz and Downward, 2001). Although the technology has only been developed in roughly the last ten years, it has advanced rapidly and the list of applications in which microarrays have been used is growing. Microarray experiments are capable of comprehensively assessing relative changes in global gene expression profiles and as such can be used to elucidate transcriptional mechanisms dictating development and the response to environmental stimuli (lyer et al, 1999). They can also be used to characterize disease states and associate these transcriptional profiles with prognostic outcome (Chung et al, 2002). In addition to DNA microarrays that are designed to assess transcriptional activity, there are DNA microarrays that are designed to characterize DNA / protein interactions as well as genetic variation (Pollack and lyer, 2002; Patil N et al, 2001). It is also predicted that in the future DNA microarrays will be used in clinical settings for diagnosis and perhaps personalized medicine (Petricoin EF et al, 2002). The UNMC DNA Microarray Core Facility will support the COBRE project as outlined by providing the necessary resources for the investigators to utilize DNA microarray technology in their respective research projects. Microarray technology is a means by which much needed novel insights can be gained in biological pathways, as such it will help the junior investigators obtain data to significantly increase the likelihood that they will be competitive in regard to applying for extramural funding.
No Sub Projects information available for 5P20RR018788-04 7481
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P20RR018788-04 7481
Patents
No Patents information available for 5P20RR018788-04 7481
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P20RR018788-04 7481
Clinical Studies
No Clinical Studies information available for 5P20RR018788-04 7481
News and More
Related News Releases
No news release information available for 5P20RR018788-04 7481
History
No Historical information available for 5P20RR018788-04 7481
Similar Projects
No Similar Projects information available for 5P20RR018788-04 7481