Awardee OrganizationSTATE UNIVERSITY NEW YORK STONY BROOK
Description
Abstract Text
DESCRIPTION (provided by applicant): GTP-binding proteins are key switches in signaling pathways that regulate critical cellular functions such as growth and differentiation. Ras, which serves as a prototype for GTP-binding is constitutively activated in a large number of cancers including those of the pancreas, bladder, colon, and lung. The long-term goal of this research is to interfere with the oncogenic forms of Ras in human disease by understanding its cycling. Because oncogenic Ras relies on its intrinsic ability to hydrolyze and exchange GTP, the primary goal of this research proposal is to better our understanding of Ras cycling between the active and inactive states by revealing structures of intermediates of the reactions of GTP hydrolysis and guanine nucleotide exchange. Screening of drugs that will stabilize a non-signaling conformation of oncogenic Ras will be also performed. This proposal is based on findings that altering the flexibility of a hinge region stabilizes structures of Ras that are normally transient. Using this approach, two structures of intermediates along the path for GTP hydrolysis were stabilized as well as an open non-signaling conformation, which is also adopted by the native protein. The first aim of this proposal tests the hypothesis that the open conformation of Ras mimics the structure of an intermediate for nucleotide exchange and the structu-e of an unappreciated native conformation. Additional structures of intermediates for Ras cycling will be generated by altering the flexibility of another hinge region. The generated mutants will be studied using a combination of structural, molecular dynamics, biochemical, and in vivo techniques. The second aim tests the hypothesis that Rho- family members and trimeric G-proteins do not follow the Ras path of GTP hydrolysis and nucleotide exchange despite strong sequence homology. The third aim uses biophysical, structural, and cellular approaches to study how small molecules identified by screening the NCI database interact with the open non-signaling conformation and inhibit oncogenic Ras in a pancreatic cancer model system. The outcome of the proposed research should improve our understanding of the regulation of key signaling proteins and our ability to interfere with their action in human diseases.
No Sub Projects information available for 5R01CA115611-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01CA115611-02
Patents
No Patents information available for 5R01CA115611-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01CA115611-02
Clinical Studies
No Clinical Studies information available for 5R01CA115611-02
News and More
Related News Releases
No news release information available for 5R01CA115611-02
History
No Historical information available for 5R01CA115611-02
Similar Projects
No Similar Projects information available for 5R01CA115611-02