Awardee OrganizationBOSTON UNIVERSITY MEDICAL CAMPUS
Description
Abstract Text
DESCRIPTION (provided by applicant): Worldwide, heterosexual transmission accounts for most HIV-1 infections. Clearly, controlling heterosexual transmission of HIV-1 would be a significant step toward eliminating this global epidemic. To achieve this goal, it will be important to delineate the cellular and molecular events that affect virus transmission. Although both inflammatory and ulcerative sexually transmitted infections (STIs) enhance sexual transmission of HIV-1, the underlying mechanisms leading to this enhancement have not been fully elucidated. Enhanced susceptibility to infection may be due to a number of factors, including the disruption of the integrity of the cervicovaginal epithelial barrier, recruitment of HIV-1 target cells such as Langerhans/dendritic cells (LC/DC), macrophages (M?) and T lymphocytes to sites of inflammation, and direct activation of target cells by STIs. A common feature of STI pathogens is that they encode ligands for members of the Toll-like receptor (TLR) family of pattern recognition receptors and these ligand-activated TLRs can both activate HIV-1 target cells and induce local inflammatory responses. Ligand-activated nuclear receptors (NR), including peroxisome proliferator activated receptor (PPAR), liver X receptor (LXR), glucocorticoid receptor (GR), are potent inhibitors of TLR-induced inflammatory gene expression in M?, LC/DC, and epithelial cells. In addition, retinoic acid receptor (RAR) and PPAR ligands have been shown to repress HIV-1 gene expression. Our initial goal is to determine the role of Neisseria gonorrhoeae exposure or TLR-signaling in augmenting HIV-1 infection of target cells that are found in the cervicovaginal mucosae. Our major and long-term goal is to examine the potential role of ligand-activated NR as inhibitors of HIV-1 transmission. We will test the hypothesis that ligand-activated NR act by: 1) directly repressing HIV-1 transcription, and 2) by limiting the STI or TLR-induced inflammatory microenvironment that favors HIV-1 replication. To achieve these goals, we will 1) evaluate the impact of NR/TLR crosstalk on HIV-1 replication and inflammatory gene expression in primary LC, DC, MF and T cells, 2) determine the mechanism(s) of TLR-modulated HIV-1 transcription and how it is regulated by NR signaling, and 3) examine the effects of NR/TLR crosstalk on HIV-1 infection of target cells and inflammation in vaginal and cervical tissue explants and in an organotypic model of the human vagina.
PUBLIC HEALTH RELEVANCE: World-wide, most new infections with HIV-1, the virus that causes AIDS, occur in women who have had intercourse with infected men. The ability of HIV-1 to be transmitted to women is greater in those women who are also infected with other sexually transmitted diseases. This is partly due to the fact that these other diseases cause inflammation. We are studying a novel class of drugs that we believe inhibit HIV-1 infection by blocking both inflammation and the ability of HIV-1 to grow. We will test these drugs for their ability to inhibit HIV-1 transmission using purified cells and a unique laboratory-derived tissue model of the female reproductive tract.
National Institute of Allergy and Infectious Diseases
CFDA Code
855
DUNS Number
604483045
UEI
FBYMGMHW4X95
Project Start Date
01-March-2008
Project End Date
28-February-2013
Budget Start Date
01-March-2009
Budget End Date
28-February-2010
Project Funding Information for 2009
Total Funding
$531,708
Direct Costs
$327,205
Indirect Costs
$204,503
Year
Funding IC
FY Total Cost by IC
2009
National Institute of Allergy and Infectious Diseases
$531,708
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 5R01AI073149-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01AI073149-02
Patents
No Patents information available for 5R01AI073149-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01AI073149-02
Clinical Studies
No Clinical Studies information available for 5R01AI073149-02
News and More
Related News Releases
No news release information available for 5R01AI073149-02
History
No Historical information available for 5R01AI073149-02
Similar Projects
No Similar Projects information available for 5R01AI073149-02