DESCRIPTION (provided by applicant): Macroautophagy (hereafter referred to as "autophagy") is a well-conserved catabolic process in eukaryotic cells. It is defined by the formation of double membrane autophagosome vesicles and functions in the intracellular degradation of cytosol and organelles. Although autophagy has long been recognized, its functions in various physiological and pathological processes have only begun to be elucidated. Our recent work has demonstrated that primary T lymphocytes have the capacity to undergo autophagy and that the autophagy gene Atg5 is essential for T cell survival and proliferation, suggesting that autophagy is a novel mechanism regulating mature T cell homeostasis. However, the underlying molecular mechanisms by which autophagy promotes T lymphocyte survival and proliferation remain unknown. Specifically, it is not clear whether the defect in Atg5-/- T cells is caused by an inability to form autophagosomes or an autophagy-independent function of Atg5? More importantly, if impaired autophagy compromises T cell survival, by what mechanism does autophagy inhibit death in T lymphocytes? Using conditional deletion of a second autophagy gene, Atg7, in T lymphocytes, we have established an essential role for autophagy in the survival of naive T lymphocytes. We have found that mitochondrial homeostasis is disrupted in T cells lacking Atg5 or Atg7. These results suggest that autophagy plays a key role in T cell function through maintaining the homeostasis of intracellular organelles. Our overall hypothesis is that autophagic function in mature primary T lymphocytes is required for cell survival and TCR-mediated proliferation through maintaining turnover of cytoplasmic material, in particular the essential organelle structures such as mitochondria. We proposed three specific aims to test this hypothesis. In aim 1, we will determine how autophagy is regulated in primary T lymphocytes and the developmental stages at which the induction of autophagy contributes to cell survival. In aim 2, we will examine how deregulation of organelle homeostasis contributes to cell death in autophagy-deficient primary T lymphocytes. In aim 3, we will establish the mechanisms by which loss of autophagy genes inhibits cell cycle progression during T cell proliferation. Results from this study will shed important insights to the molecular mechanisms by which mature T cell function is regulated. Better understanding this process will undoubtedly help future design of strategies boosting T cell immune responses to pathogens. PUBLIC HEALTH RELEVANCE: We propose to study the roles of an essential intracellular process termed autophagy in regulating T lymphocyte survival and proliferation. The results from this study, if funded, will provide important information for the treatment and prevention of diseases related to T lymphocytes including designing vaccines to boost T cell immune response to microbial pathogens, tumor genesis and autoimmune disease development.
Public Health Relevance Statement
Project narrative
We propose to study the roles of an essential intracellular process termed autophagy in regulating T
lymphocyte survival and proliferation. The results from this study, if funded, will provide important
information for the treatment and prevention of diseases related to T lymphocytes including designing
vaccines to boost T cell immune response to microbial pathogens, tumor genesis and autoimmune disease
development.
National Institute of Allergy and Infectious Diseases
CFDA Code
855
DUNS Number
044387793
UEI
TP7EK8DZV6N5
Project Start Date
01-May-2009
Project End Date
30-April-2014
Budget Start Date
01-May-2009
Budget End Date
30-April-2010
Project Funding Information for 2009
Total Funding
$390,000
Direct Costs
$250,000
Indirect Costs
$140,000
Year
Funding IC
FY Total Cost by IC
2009
National Institute of Allergy and Infectious Diseases
$390,000
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 1R01AI074944-01A1
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01AI074944-01A1
Patents
No Patents information available for 1R01AI074944-01A1
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01AI074944-01A1
Clinical Studies
No Clinical Studies information available for 1R01AI074944-01A1
News and More
Related News Releases
No news release information available for 1R01AI074944-01A1
History
No Historical information available for 1R01AI074944-01A1
Similar Projects
No Similar Projects information available for 1R01AI074944-01A1