Rhodopsin endocytic trafficking and Drosophila visual sensitivity
Project Number1R01EY019060-01A1
Contact PI/Project LeaderLI, HONG-SHENG
Awardee OrganizationUNIV OF MASSACHUSETTS MED SCH WORCESTER
Description
Abstract Text
DESCRIPTION (provided by applicant): The long-term goal of the proposed research is to reveal the physiological functions and in vivo mechanisms of G protein-coupled receptor (GPCR) endocytosis and postendocytic trafficking. GPCRs are the largest family of membrane receptors that receive sensory stimuli and mediate responses to neurotransmitters, neuropeptides, hormones, cytokines and growth factors. Activity-dependent endocytosis of GPCR reduces receptor numbers on the cell surface and is an important feedback regulation on the receptor signaling. In addition to being sorted into lysosome for degradation, endocytosed GPCRs are more frequently recycled back to the plasma membrane. The process of endocytosis and recycling is required for many receptors to dissociate from the binding ligand so that they can receive new stimuli. Failure of this process has been implicated in drug tolerances such as that to morphine. Although a large body of works has elicited various mechanisms of receptor endocytosis in cultured cells, the studies on GPCR endocytosis in intact organisms are still limited. More importantly, it is unclear how the endocytosed receptors are recycled back to the cell surface. In addition, the specific physiological functions of endocytosis and recycling have yet to identify for each GPCR. The major light receptor Rh1 rhodopsin in Drosophila eye is a model molecule for genetic characterization of GPCR signaling and regulation. Recently we identified a null mutant of a gene that encodes a CUB- and LDLa-domain protein (CULD), and found that a large amount of endocytosed Rh1 protein was retained in the cell body of the mutant photoreceptor. Our preliminary studies suggest that this is due to a failure of Rh1 recycling. We propose to take advantage of this culd mutant and several additional new mutant flies to study the mechanisms and the regulations of Rh1 endocytosis and recycling, and to characterize their impacts on the visual sensory function. Using a combination of molecular genetic, biochemical and electrophysiological approaches, we will 1. Confirm that the CULD protein is required for the recycling of Rh1 in photoreceptor 2. Test the hypothesis that CULD interacts with Arr1 for the localization of Rh1 in the rhabdomere 3. Test the hypothesis that loss of CULD impairs the development of light sensitivity in photoreceptors 4. Test the hypothesis that LAP is involved in the Rh1 endocytosis 5. Test the hypothesis that the deglycosylation of Rh1 restricts its endocytosis 6 Screen for additional molecules involved in the recycling of Rh1. PUBLIC HEALTH RELEVANCE: G protein-coupled receptor (GPCR) proteins on the cell membrane mediate >80% of transmembrane signaling activities, and are the major targets for pharmaceutical drug designs. In this proposal we plan to use Drosophila rhodopsin Rh1, a light-stimulated GPCR, as a model to genetically characterize the mechanisms underlying the receptor endocytosis and recycling. These processes regulate the intensity of GPCR signaling, and have been implicated in clinical disorders such as retinal degenerations and opioid tolerance.
Public Health Relevance Statement
Project narrative
G protein-coupled receptor (GPCR) proteins on the cell membrane mediate >80% of
transmembrane signaling activities, and are the major targets for pharmaceutical drug
designs. In this proposal we plan to use Drosophila rhodopsin Rh1, a light-stimulated
GPCR, as a model to genetically characterize the mechanisms underlying the receptor
endocytosis and recycling. These processes regulate the intensity of GPCR signaling,
and have been implicated in clinical disorders such as retinal degenerations and opioid
tolerance.
Eye Disease and Disorders of Vision; Neurosciences
Sub Projects
No Sub Projects information available for 1R01EY019060-01A1
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01EY019060-01A1
Patents
No Patents information available for 1R01EY019060-01A1
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01EY019060-01A1
Clinical Studies
No Clinical Studies information available for 1R01EY019060-01A1
News and More
Related News Releases
No news release information available for 1R01EY019060-01A1
History
No Historical information available for 1R01EY019060-01A1
Similar Projects
No Similar Projects information available for 1R01EY019060-01A1