DNA Polymerase Fidelity Mechanisms: Theory and Experiment
Project Number5U19CA105010-06
Contact PI/Project LeaderGOODMAN, MYRON
Awardee OrganizationUNIVERSITY OF SOUTHERN CALIFORNIA
Description
Abstract Text
DESCRIPTION (provided by applicant): This Program Project is designed to address fundamental issues in mutagenesis relevant to the root causes of cancer, in accordance with the mission of NCI. We propose to investigate the molecular basis of DNA polymerase accuracy, relating theory to experiment and vice versa, using human DNA polymerase beta as a model system. Pol beta plays a key role in the avoidance of cancer, because its loss of regulation or disruption by mutation induces chromosome instability and tumorigenesis. Our primary goals are focused on understanding the principles of polymerase fidelity defined by the detailed interactions between specific amino acid side chains, primer/template bases and dNTP substrates at the Pol active site. The Program Project contains three research projects, structural (Project 1), theoretical computational (Project 2), kinetics (Project 3) and three core facilities, a Biochemical Synthetic and Analysis Core (Core B), a Computational Core (Core C) and an Administrative Core (Core A). The goal of Project 1 is to obtain high-resolution structural data for normal and mutant forms of pol ? using a new class of nucleotide analogs designed in Project 3 and synthesized in Core B. These analogs will be used in drug design and delivery strategies to establish their potential use as anticancer agents in mouse and cultured cell model systems, in a translational approach to target bone tumors. A unique and timely aspect of the PPG is the application of theoretical and computer-modeling approaches to structure/function analysis of catalytic efficiencies in polymerase active sites, as proposed in Project 2. The modeling analysis calculates free energies, which are used to predict individual contributions of amino acid side chains to fidelity, including substrate binding and catalysis in the polymerase active site. The theory serves as the intellectual framework with which to marry structural analysis with kinetic mechanistic analyses described in Project 3. It is usually atypical for the experimentalist to test a priori computational predictions. Thus, a defining aspect of this PPG is its bidirectional interplay, where computational predictions are tested experimentally and new experimental data are used to refine the theory.
No Sub Projects information available for 5U19CA105010-06
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5U19CA105010-06
Patents
No Patents information available for 5U19CA105010-06
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5U19CA105010-06
Clinical Studies
No Clinical Studies information available for 5U19CA105010-06
News and More
Related News Releases
No news release information available for 5U19CA105010-06
History
No Historical information available for 5U19CA105010-06
Similar Projects
No Similar Projects information available for 5U19CA105010-06