CryoEM Structural Studies of DNA-PKcs and Nonhomologous End Joining Complexes
Project Number5R01CA140538-02
Contact PI/Project LeaderSTEWART, PHOEBE L
Awardee OrganizationVANDERBILT UNIVERSITY
Description
Abstract Text
DESCRIPTION (provided by applicant): Nonhomologous end joining (NHEJ) serves as the primary pathway for repairing DNA double-strand breaks (DSBs) in humans. Repairing DNA damage that occurs from oxidative damage and exposure to ionizing radiation is vital for genetic stability and for suppression of oncogenesis. NHEJ is also essential for V-D-J recombination in lymphocytes, which generates a functional adaptive immune system. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates repair the NHEJ pathway along with other key components Ku and Artemis. The Ku70/80 heterodimer is the first protein to recognize and bind DNA ends at double strand breaks and recruits DNA-PKcs to the damage sites. Artemis in complex with DNA-PKcs performs the endonucleolytic activity necessary for the hairpin-opening step of V-D-J recombination and DNA end processing in NHEJ. Mutations in any of these three components results in radiosensitivity and severe combined immunodeficiency in humans. The lack of high resolution structural information on DNA- PKcs and NHEJ complexes has prevented a mechanistic understanding of their critical DNA repair activity and regulation. CryoEM single particle image reconstruction is well suited for studying DNA-PKcs and large NHEJ complexes. The specific aims of this proposal are to determine subnanometer (<10E) resolution cryoEM structures of DNA-PKcs/Artemis/DNA, DNA-PKcs/Artemis, DNA-PKcs/dsDNA, and DNA- PKcs/Ku/DNA complexes, as well as perform an atomic level structural analysis of these NHEJ complexes with emerging tools from the protein structure prediction field. The structural analysis will include docking of available atomic resolution structures and comparative models, as well as application of hybrid cryoEM de novo protein structure prediction methods. These studies will be highly complementary to ongoing biochemical, genetics, and x-ray crystallographic studies. Detailed knowledge of the molecular geometry of these complexes will provide insight into the kinase activation and endonuclease phases of NHEJ and will enable generation of testable hypotheses on molecular mechanisms underlying DNA break repair by the NHEJ pathway. Ultimately our ability to therapeutically treat cancer and immunodeficiency diseases will be enhanced by a molecular understanding of the underlying biological processes that are improperly regulated in the disease state.
PUBLIC HEALTH RELEVANCE: The proposed studies are biomedically relevant in that structural information on NHEJ complexes will help to answer key questions on how these complexes assemble at DNA damage sites, how the repair and recombination processes are guided, and what triggers the choice between multiple parallel pathways and outcomes. Ultimately this information will be helpful in understanding and treating cancer, severe combined immune deficiency (SCID), and sensitivity to ionizing radiation (RS-SCID).
Public Health Relevance Statement
Project Narrative
The proposed studies are biomedically relevant in that structural information on NHEJ complexes will help
to answer key questions on how these complexes assemble at DNA damage sites, how the repair and
recombination processes are guided, and what triggers the choice between multiple parallel pathways and
outcomes. Ultimately this information will be helpful in understanding and treating cancer, severe combined
immune deficiency (SCID), and sensitivity to ionizing radiation (RS-SCID).
No Sub Projects information available for 5R01CA140538-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01CA140538-02
Patents
No Patents information available for 5R01CA140538-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01CA140538-02
Clinical Studies
No Clinical Studies information available for 5R01CA140538-02
News and More
Related News Releases
No news release information available for 5R01CA140538-02
History
No Historical information available for 5R01CA140538-02
Similar Projects
No Similar Projects information available for 5R01CA140538-02