Synaptic basis for visual cortical receptive field properties
Project Number5R01EY018861-05
Contact PI/Project LeaderDAN, YANG
Awardee OrganizationUNIVERSITY OF CALIFORNIA BERKELEY
Description
Abstract Text
DESCRIPTION (provided by applicant): The mammalian neocortex mediates a variety of cognitive functions, and understanding the circuit basis for cortical processing is a central goal in neuroscience. In the primary visual cortex (V1), the receptive field properties of individual neurons have been characterized extensively, but the underlying neuronal circuitry remains unclear. The goal of the proposed research is to dissect the excitatory and inhibitory synaptic inputs underlying the spatiotemporal receptive fields of V1 neurons. Experimentally, we will make intracellular (patch clamp) recordings in anesthetized rats and cats to measure the synaptic inputs to cortical neurons. Computationally, we will apply both linear and nonlinear analyses to determine the receptive field properties of each input. There are four specific aims. Aim 1 is to characterize the synaptic mechanisms underlying the basic receptive field and direction selectivity of simple cells. To test the anti-phase inhibition model, we will determine the extent to which the excitatory and inhibitory receptive fields are matched to each other with opposite ON/OFF polarities. The contributions of several proposed mechanisms to simple cell direction selectivity will be assessed. Aim 2 is to characterize the synaptic circuitry underlying the receptive field subunits of complex cells. The predictions of different circuit models for complex cell RFs will be tested. We will also determine the contributions of several proposed mechanisms to complex cell direction selectivity. In Aims 3 and 4 we will address two of the more advanced receptive field properties involved in processing motion stimuli. Our recent study using extracellular recordings indicated a spatial asymmetry in direction-selective inputs to V1 neurons, which gives rise to two novel RF properties that could account for two visual illusions. In Aim 3, we will examine the spatial distributions of direction-selective excitatory and inhibitory inputs in order to test and constrain the asymmetric circuit model. In Aim 4, we will measure the effects of motion adaptation on the strength and direction selectivity of excitatory and inhibitory synaptic input to determine how these inputs contribute to adaptation-induced change in V1 direction selectivity. To further test the asymmetric circuit model, we will also measure the effect of motion adaptation on the spatial distributions of the excitatory and inhibitory inputs. Such comprehensive characterization of the synaptic mechanisms underlying cortical receptive field properties is not only crucial for understanding V1 functions, but also likely to shed light on the general principles of cortical computation. PUBLIC HEALTH RELEVANCE Balance between excitation and inhibition in the cortex is critical for normal brain functions, and disruption of the balance causes a variety of mental disorders. The proposed research aims to understand the relationship between excitatory and inhibitory inputs, and how they shape the functional properties of visual cortical neurons. Such knowledge will be crucial for the development of treatment for not only deficiencies in visual functions, but also other neurological disorders such as epilepsy.
Eye Disease and Disorders of Vision; Neurosciences
Sub Projects
No Sub Projects information available for 5R01EY018861-05
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01EY018861-05
Patents
No Patents information available for 5R01EY018861-05
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01EY018861-05
Clinical Studies
No Clinical Studies information available for 5R01EY018861-05
News and More
Related News Releases
No news release information available for 5R01EY018861-05
History
No Historical information available for 5R01EY018861-05
Similar Projects
No Similar Projects information available for 5R01EY018861-05