Integrative signaling models to decipher complex cancer phenotypes
Project Number1U01CA164720-01A1
Contact PI/Project LeaderBILD, ANDREA HOPE Other PIs
Awardee OrganizationUNIVERSITY OF UTAH
Description
Abstract Text
DESCRIPTION (provided by applicant): The focus of our research is to investigate core signaling pathways that contribute to cancer growth, and to develop models to accurately determine optimal therapeutic regimens for cancer patients. Recent results from clinical trials using targeted therapies for solid tumors have shown that drug response is oftentimes not driven by one mutation or pathway alone. Instead, response is confounded by interactions between the target gene and deregulation of downstream and alternative pathways. Therefore, our studies aim to model how signaling pathways work in relation to others in human tumors, and to identify patterns that correlate to drug response. We hypothesize that integrated 'omic' pathway models composed of multiple components of the growth factor receptor pathways will define biologically distinct subtypes of breast cancer and will accurately predict drug response in
patient tumors. Specifically, we will develop and use genomic signatures centered on multiple levels of the growth factor receptor networks (GFRNs) to investigate how these pathways signal in human tumors. Novel statistical modeling approaches, including probabilistic barcode data standardization and Bayesian factor analysis for prediction of pathways and pathway interactions in tumors will move beyond individual pathway predictions to instead profile multi-pathway models in human tumors. Further, these models will integrate 'omic' data types, including RNA-sequencing, mutation status, and proteomic data, enabling a more comprehensive analysis of GFRN deregulation. GFRN pathway activity predictions and sensitivity/resistance to drugs that target the respective pathways will be validated in both cell lines as well as in "fresh" human tumor cells grown in 3-dimensional culture. Importantly, clinical validation of the pathway profiles will be carried out with I-SPY 2 (Investigation of Seril Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2) clinical trial data, which uses targeted therapies directed at GFR pathway components in the treatment of breast cancer. Ultimately, our studies will generate a series of well-validated pathway based biomarkers for individualized assessment of drug responsiveness, as well as interrogation of the coordinate deregulation of specific GFRN components in human tumors.
Public Health Relevance Statement
At the end of this U01, we will have developed a series of novel and well-validated genomic tools to directly interrogate discrete growth factor receptor (GFR) signaling pathways within tumors and for prediction of response to targeted agents. Novel statistical modeling approaches will move beyond individual pathway analysis to instead leverage gene expression, mutation and proteomic data to provide multi-pathway models in human tumors. The proposed research will provide the following deliverables: (SA1) validated biologically relevant gene expression signatures, (SA2) novel multi-pathway models that integrate 'omic' data and identify signaling networks deregulated in human tumors, and (SA3) investigation of relationships between network deregulation and drug response. Cumulatively, these research efforts aim to positively impact patient treatment strategies and GFR network biology comprehension for human tumors.
No Sub Projects information available for 1U01CA164720-01A1
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1U01CA164720-01A1
Patents
No Patents information available for 1U01CA164720-01A1
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1U01CA164720-01A1
Clinical Studies
No Clinical Studies information available for 1U01CA164720-01A1
News and More
Related News Releases
No news release information available for 1U01CA164720-01A1
History
No Historical information available for 1U01CA164720-01A1
Similar Projects
No Similar Projects information available for 1U01CA164720-01A1