Roles of CST, a novel telomere associated complex, at the DNA replication fork
Project Number5F32GM097833-02
Contact PI/Project LeaderSTEWART, JASON AARON
Awardee OrganizationUNIVERSITY OF CINCINNATI
Description
Abstract Text
DESCRIPTION (provided by applicant): The overall goal of this project is to understand the mechanism of DNA replication through difficult-to-replicate sites of DNA. These would include sites predicted to form DNA secondary structure such as telomeres and fragile sites. Telomeres consist of repetitive, G-C rich DNA and have long been considered natural impediments to the replication fork machinery. Fragile sites are expressed as gaps or breaks in chromosomal DNA that occur during conditions of replication stress. Telomeres and fragile sites are known to cause genomic instability and can lead to carcinogenesis when not properly maintained. CTC1-STN1-TEN1 (CST) is a novel protein complex, which was recently discovered in plants and vertebrates. STN1 and TEN1 are homologues to yeast proteins, which are involved in telomere maintenance and end-protection. In humans, CST was shown to localize to telomeres. Depletion of human CST subunits results in hallmarks of genomic instability, i.e. increased 3H2AX foci and chromatin bridges, as well as telomere abnormalities such as increased G-overhangs and telomere signal loss. Results from several labs suggest that CST has both telomeric and non- telomeric functions. Importantly, CST was shown to interact with DNA polymerase 1-primase (pol 1), which initiates DNA synthesis. Preliminary results presented in this proposal suggest that CST functions in telomere replication and replication fork reinitiation. We propose that CST recruits DNA pol 1 to reinitiate DNA synthesis at sites of dificult-to-replicate DNA, which may stall DNA replication. In aim 1, the role of CST in telomere replication will be investigated. Studies will then be extended to determine whether CST is required to maintain chromosomal fragile sites. Finally, the extent to which interactions between CST and the RecQ helicases, WRN and BLM, are required to maintain telomere and fragile site stability will be measured. In aim 2, the mechanism by which CST promotes replication fork progression will be studied. Fork reinitiation after fork stalling and the levels of single-stranded DNA will be measured in CST-depleted cell lines. CST interactions with replication fork components and fork reinitiation factors will then be explored. Together, these studies will provide an understanding of how CST helps maintain genomic stability through difficult-to-replicate DNA.
Public Health Relevance Statement
Each time a cell divides its DNA must be copied, or replicated, properly; if mistakes occur during replication, mutations can result which can lead to diseases, such as cancer and genetic disorders. Some cellular DNA is inherently difficult to replicate due to unusual DNA structure and may require the action of special proteins to promote proper replication. The proposed research will explore the role a newly discovered protein complex in replication of these difficult-to-replicate sites.
No Sub Projects information available for 5F32GM097833-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5F32GM097833-02
Patents
No Patents information available for 5F32GM097833-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5F32GM097833-02
Clinical Studies
No Clinical Studies information available for 5F32GM097833-02
News and More
Related News Releases
No news release information available for 5F32GM097833-02
History
No Historical information available for 5F32GM097833-02
Similar Projects
No Similar Projects information available for 5F32GM097833-02