CpnA's role in cAMP signaling and the actin cytoskeleton in Dictyostelium
Project Number2R15GM078089-02
Contact PI/Project LeaderDAMER, CYNTHIA K
Awardee OrganizationCENTRAL MICHIGAN UNIVERSITY
Description
Abstract Text
DESCRIPTION (provided by applicant): Copines are highly conserved calcium-dependent membrane-binding proteins found in numerous diverse eukaryotic organisms. The wide array of organisms ranging from single-celled organisms to humans in which copines are found suggest that copines carry out fundamental functions important in most eukaryotic cells. A growing body of evidence indicates that copines act as regulatory proteins in signaling pathways. The model organism Dictyostelium discoideum has six copine genes (cpnA-cpnF) and provides an ideal system for studying copine function. Dictyostelium can live independently as single-celled amoebae, but when placed in starvation conditions, single amoeba signal each other to first aggregate and then differentiate into cells that form a multicellular fruiting body. This simple developmental program in Dictyostelium is widely used to study not only development, but also several basic cell processes including chemotaxis-mediated cell motility, signal transduction, programmed cell death, and cell differentiation. Previous studies showed that one of the copine proteins in Dictyostelium, CpnA, is required for normal development. The overall goal of the previous grant award was to correlate our findings on cpnA- cells during developmental processes (aim 1) and the identification of the target proteins of CpnA (aim 2) to generate more specific hypotheses about the function of CpnA. Significant progress was made on both of these specific aims and data collected during the previous grant award period has led to two new hypotheses about the function of CpnA. These two hypotheses form the two specific aims of this renewal proposal: 1) Determine if CpnA is a negative regulator of the cAMP phosphodiesterase, RegA and 2) Determine if CpnA is a negative regulator of actin filament polymerization. This grant proposal describes experiments using biochemical, genetics, and microscopy approaches to test these hypotheses. The results of these experiments will make a significant impact on this field by being the first to define a mechanistic role for a copine protein. Human copines have been implicated to play a role in cancer by regulating signaling pathways involving the ErB2 receptor and in immune responses by regulating signaling pathways involving the TNF (tumor necrosis factor) receptor. Increasing our scientific knowledge of how copines function could lead to a better understanding of cancer and immune cell-related diseases.
Public Health Relevance Statement
The proposal outlines experiments to investigate the functions of a novel family of proteins called copines. Copines are hypothesized to have roles in cell signaling pathways, but their exact functions are unknown. The human genome has eight copine genes and copines have been implicated in cancer and immune responses. Increasing our scientific knowledge of how copines function could potentially lead to a better understanding of cancer and immune-cell related diseases.
No Sub Projects information available for 2R15GM078089-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 2R15GM078089-02
Patents
No Patents information available for 2R15GM078089-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 2R15GM078089-02
Clinical Studies
No Clinical Studies information available for 2R15GM078089-02
News and More
Related News Releases
No news release information available for 2R15GM078089-02
History
No Historical information available for 2R15GM078089-02
Similar Projects
No Similar Projects information available for 2R15GM078089-02