Contact PI/Project LeaderAFSHAR-KHARGHAN, VAHID Other PIs
Awardee OrganizationUNIVERSITY OF TX MD ANDERSON CAN CTR
Description
Abstract Text
DESCRIPTION (provided by applicant): Elevated platelet counts are a common finding in many cancer patients, including patients with ovarian cancer. Patients with ovarian cancer and thrombocytosis have a worse prognosis compared to patients with similar stages of cancer and normal platelet counts. We have shown that platelets promote proliferation of cancer cells both in vitro and in the murine models of ovarian cancer; and reducing platelet counts decreased the size of orthotopic tumor induced in mice by ovarian cancer cells. To identify the mechanisms of the growth- enhancing effect of platelets on cancer cells, we used blocking reagents against platelets in vitro, and found that platelet activation and release of TGF¿1 are important for the proliferative effect of platelets on cancer cells. In this project, we will study the interaction between platelets and cancer cells in vivo, using both murine models of ovarian cancer and tissue samples obtained from patients with ovarian cancer. Our hypothesis is that there is a feedback loop between platelets and cancer cells. Cancer cells secrete ADP and activate platelets, and platelets secrete TGF¿1 that promotes proliferation in cancer cells. In the specific
aim 1, we will investigate whether blocking ADP receptors on platelets would disrupt the growth promoting effect of platelets on orthotopic tumors in mice, using genetically modified mice or pharmacologic reagents. In the specific aim 2, we will target TGF¿1 secretion from platelets, TGF¿1 receptor on cancer cells, or TGF¿1 receptor signaling to evaluate the role of TGF¿1 on the platelet-cancer cell interaction. We will use platelet-specific TGF¿1 deficient mice, inhibitor RNAs, or pharmacologic reagents against TGF¿ receptor signaling to conduct these experiments. For the interaction between platelets and cancer cells to occur inside the tumors, platelets should exit circulation and enter into tumor microenvironment. We have shown the presence of platelets outside of blood vessel inside the implanted tumors in mice. In the specific aim 3, we will study the mechanisms of platelet exit from tumor microcirculation using immunofluorescence and electron microscopy on human and murine ovarian cancer tissue samples. We will identify the route of platelet extravasation, and evaluate the dependency of platelets on neutrophils for extravasation. The goal of our studies in this grant proposal is to evaluate the possibility of using anti-platelet reagents as an effective anticancer therapy.
Public Health Relevance Statement
Platelets promote growth and metastasis of malignant tumors. In this project, we will identify the mechanism of platelet involvement in tumor growth in murine models of ovarian cancer. We will investigate the effect of blocking the interaction between platelets and cancer cells, using available anti-platelet medications, on tumor progression with a long term goal to evaluate the usefulness of anti-platelet medications as an effective and relatively safe anti-cancer therapy.
No Sub Projects information available for 1R01CA177909-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01CA177909-01
Patents
No Patents information available for 1R01CA177909-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01CA177909-01
Clinical Studies
No Clinical Studies information available for 1R01CA177909-01
News and More
Related News Releases
No news release information available for 1R01CA177909-01
History
No Historical information available for 1R01CA177909-01
Similar Projects
No Similar Projects information available for 1R01CA177909-01