(PQD5) Development of in Vitro Vascularized Microtumors for Drug Screening
Project Number1R01CA180122-01
Contact PI/Project LeaderHUGHES, CHRISTOPHER C. W.
Awardee OrganizationUNIVERSITY OF CALIFORNIA-IRVINE
Description
Abstract Text
DESCRIPTION (provided by applicant): Since current methods to predict the efficacy or toxicity of new drug candidates in humans are often inaccurate, can we develop new methods to test potential therapeutic agents that yield better predictions of response? Provocative questions demand bold answers. Here we propose a radically new bioengineering approach to drug screening that employs arrayed human 3D microtumors, supported by perfused capillaries. Tumor cells grow within a small chamber filled with complex ECM and stromal cells, and are nourished by a network of newly-formed capillaries that are connected to an artificial arteriovenous system. Hundreds of chambers can be arranged on a single chip, each with its own vascular supply, thereby allowing for development of a high- throughput screening (HTS) platform. Tumor lines can be used for drug-discovery, or patient-specific tumor cells for personalized screening. This system combines the advantages of tissue culture - defined, rapid, cost- effective and reproducible - with the advantages of mouse models - 3-dimensional, multiple cell types interacting, complex pharmacodynamics, and dependence on vasculature for survival and drug-delivery. In addition, lentiviral-mediated expression of red, yellow and green fluorescent proteins in the tumor cells, endothelial cells and stromal cells will allow for repeate, rapid and quantitative assessment of drug toxicity/efficacy against each cell type over time. Importantly, the key technologies underlying this proposal have already passed the proof-of-concept stage - we now seek to optimize and harmonize the components into a working HTS platform that will more accurately predict how drugs will act in humans.
Public Health Relevance Statement
Since current methods to predict the efficacy or toxicity of new drug candidates in humans are often inaccurate, can we develop new methods to test potential therapeutic agents that yield better predictions of response? Provocative questions demand bold answers. Here we propose a radically new way of screening for potential cancer treatments using a device that has a micro-tumor growing in 3D (like in the body) and nourished by perfused human blood vessels. This has never been done before and opens up huge new possibilities for screening drugs in a more "normal" environment. This device has the potential to revolutionize drug screening.
No Sub Projects information available for 1R01CA180122-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01CA180122-01
Patents
No Patents information available for 1R01CA180122-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01CA180122-01
Clinical Studies
No Clinical Studies information available for 1R01CA180122-01
News and More
Related News Releases
No news release information available for 1R01CA180122-01
History
No Historical information available for 1R01CA180122-01
Similar Projects
No Similar Projects information available for 1R01CA180122-01