Awardee OrganizationUNIVERSITY OF SOUTHERN CALIFORNIA
Description
Abstract Text
DESCRIPTION (provided by applicant): The lymphatic system plays the major role in tissue fluid homeostasis by draining the interstitial fluid back to the circulation. Lymphedema, caused by lymphatic malformation or obstruction, is often associated with radiation and surgery; however effective treatments that address the underlying molecular pathology are not available to date. We have recently reported that 9-cis retinoic acid (RA) can activate cell proliferation, migration and tube formation of lymphatic endothelial cells (LECs), stimulate lymphangiogenesis in vivo, and ameliorate secondary lymphedema by promoting lymphatic regeneration in a mouse model. These pro-lymphangiogenic features of 9-cisRA, however, are quite unexpected, because RAs have been known for their anti-proliferative effects on many cell types, including blood vascular endothelial cells (BECs); where RAs have been shown to suppress BEC proliferation, and RA-deficient mouse embryos display hyper-proliferation of BECs. In this proposal, therefore, we aim to address two main questions (1) what is the molecular mechanism underlying RA-induced lymphangiogenesis, and (2) how can RAs selectively induce lymphangiogenesis, while concurrently suppressing angiogenesis. Our preliminary studies revealed that RAs may regulate Notch pathway to promote lymphatic sprouting, suggesting novel crosstalk between the two important morphogenic signals, and also that Prox1, the master regulator of lymphatic differentiation and development, can physically and functionally interact with a RA-binding nuclear receptor RXR in a RA-controlled manner. Furthermore, LECs predominantly express FABP4 as a cytoplasmic RA-carrier, and PPARγ as a dimerization partner of RXR, which is known to promote cell proliferation in response to RAs, whereas BECs selectively express CRABP-II and RARα, a molecular pairing that induces cell growth arrest in response to RAs. Together, we propose working hypotheses addressing our two main questions that (1) RAs stimulate lymphatic sprouting by modulating Notch pathway genes through regulation of the interactions of Prox1 and RXR in LECs and (2) the predominant expression of FABP4 and PPARγ in LECs converts RA from an anti-proliferative signal to a pro-growth cue in LECs. Here, we aim to validate these working hypotheses by studying the role of RAs in promoting lymphangiogenesis through RXRα and PPARγ (Aim1), mechanism underlying the opposing effects of RAs on angiogenesis vs. lymphangiogenesis (Aim 2), and RA-controlled physical and functional interactions between Prox1 and RXRα (Aim 3). Together, our studies will not only provide important information on how Prox1 functions as the master regulator of lymphatic development by functioning as a nuclear receptor coregulator, but also define the molecular mechanism underlying RA-mediated selective promotion of lymphangiogenesis. In the long run, our study will help lay an essential experimental foundation to repurpose RAs as potential therapeutic agents for lymphatic circulation insufficiency.
Public Health Relevance Statement
PUBLIC HEALTH RELEVANCE: Lymphedema is one of the most common post-operative complications in cancer patients, and significantly compromises their quality of life. We have recently reported a therapeutic usage of retinoic acid to treat lymphedema using an animal model. This proposal is designed to further study the molecular mechanism underlying retinoic acid-induced lymphatic growth. The outcome of our study will help develop retinoic acids as therapeutic agents to treat lymphatic circulation insufficiency.
No Sub Projects information available for 1R01HL121036-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01HL121036-01
Patents
No Patents information available for 1R01HL121036-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01HL121036-01
Clinical Studies
No Clinical Studies information available for 1R01HL121036-01
News and More
Related News Releases
No news release information available for 1R01HL121036-01
History
No Historical information available for 1R01HL121036-01
Similar Projects
No Similar Projects information available for 1R01HL121036-01