Heat Shock Proteins and the Stress Observation System
Project Number5R01GM098455-03
Contact PI/Project LeaderDE MAIO, ANTONIO
Awardee OrganizationUNIVERSITY OF CALIFORNIA, SAN DIEGO
Description
Abstract Text
DESCRIPTION (provided by applicant): Preservation of homeostasis is a fundamental condition for any organism. The most conservative mechanism for cellular protection is the expression of heat shock proteins (hsp), which are involved in the repair and stabilization of key cellular processes after stress. Although the primary function of hsp is circumscribed to intracellular events, they have been found outside cells, released by an active process. We hypothesize that extracellular hsp are exported to "alert" the immune system that a localized stress or injury has occurred. Therefore, the immune system is primed to mount a timely response in case the localized insult should propagate. We have coined this systemic mechanism to sense stress the stress observation system (SOS). An important feature of the SOS is that hsp are released associated with extracellular vesicles (ECV) derived from the plasma membrane. These vesicles contain information for targeting specific cell types for the delivery of the stress information. Prior investigations have shown that Hsp70 (Hsp72), the major inducible form of the hsp family, was found embedded in the plasma membrane of cells recovering from a stress. In addition, Hsp70 can be inserted into artificial lipid bilayers, openin ion conductance pathways. Moreover, Hsp70 was released from cells associated with ECV. Hsp70-positive ECV is able to interact with macrophages (M s), inducing a response that primes cells to ameliorate, prevent, or defend the organism from subsequent insults, which is consistent with the role of hsp in stress tolerance. The objective of this application is to elucidate the mechanisms of Hsp70 insertion into the plasma membrane and ECV release and interaction with M s. These investigations will provide novel cellular mechanisms for protein export and activation of immune cells, which are likely to constitute new pillars of knowledge for cellular biology as well as biomedical research. Moreover, our studies may define a new regulatory system that senses the occurrence of stress in the form of vesicles that permit the communication between distant cells. An understanding of this novel communication system may be of help in the diagnosis and treatment of critically ill patients.
Public Health Relevance Statement
Extracellular hsp are part of the stress response, but at a systemic level. Hsp70 is released into circulation to alert the organism that stress has occurred, and the presence of Hsp70 in circulation may prime cells of the innate immune system after the occurrence of a localized injury to prepare for the potential propagation of the insult and offer protection from subsequent stresses.
No Sub Projects information available for 5R01GM098455-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01GM098455-03
Patents
No Patents information available for 5R01GM098455-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01GM098455-03
Clinical Studies
No Clinical Studies information available for 5R01GM098455-03
News and More
Related News Releases
No news release information available for 5R01GM098455-03
History
No Historical information available for 5R01GM098455-03
Similar Projects
No Similar Projects information available for 5R01GM098455-03