Modulating c-Myc transcription by G-quadruplex-interactive small molecules
Project Number1R01CA177585-01A1
Contact PI/Project LeaderYANG, DANZHOU
Awardee OrganizationUNIVERSITY OF ARIZONA
Description
Abstract Text
DESCRIPTION (provided by applicant): Modulating c-MYC Transcription by G-quadruplex-interactive Small Molecules DNA G-quadruplex secondary structures have recently been found to form in proximal promoter regions as transcriptional regulators, and are considered as a new class of molecular targets for anticancer drugs. Specifically, c-MYC, one of the most commonly deregulated genes in human cancers, has a DNA G-quadruplex motif in the promoter Nuclease Hypersensitive Element (NHE) III1 which regulates 80-95% of its total transcription. The DNA G-quadruplex formed in the c-MYC NHE III1 has been shown to be a transcriptional silencer element; compounds that bind to and stabilize the G-quadruplex conformation can reduce c-MYC expression and are anti- tumorigenic. We have recently discovered that the NM23-H2 protein unfolds the c-MYC promoter G-quadruplex to activate gene transcription. However, although the c-MYC promoter G-quadruplex is the first and most extensively studied system, little is known about its molecular interactions with small molecules and proteins. The hypothesis to be tested is that the physiological functions of c-MYC G-quadruplex-interactive compounds are mediated through not only the G-quadruplex but also the G-quadruplex-interactive protein. We have identified an Ellipticine analog as our lead compound for further optimization to target the c-MYC promoter G- quadruplex. Ellipticine has good "drug-like" properties and has been shown to selectively bind the c-MYC G-quadruplex. We will use NMR to understand the molecular interactions with the c- MYC G-quadruplex and ITC to characterize the thermodynamic contributions of drug binding (Aim 1). Based on this information, we will rationally design and synthesize new Ellipticine analogs with various substituents at C9, N2, N6, and C3 positions (Aim 2). We will use biochemical, biophysical, and biological assays to examine the effects of the Ellipticines on inhibiting NM23-H2 binding and unfolding of the c-MYC G-quadruplex and their effectiveness in c-MYC transcriptional suppression. A combination of structural and biological studies will allow us to understand the specific G-quadruplex interactions of Ellipticine that lead to inhibition of the NM23-H2 protein and suppression of c-MYC transcription. The overall objectives of this research are to establish the structure-activity relationship and underlying molecular mechanism of Ellipticines for c-MYC suppression and to design/synthesize new analogs for further drug development. The specific aims are: 1) To determine structural and thermodynamic details of molecular interactions of Ellipticines and related molecules with the c-MYC G- quadruplex. 2) To design and synthesize new C9-, N2-, N6-, and C3-substituted Ellipticine analogs and to study structure-activity relationship (SAR) of Ellipticines targeting the c-MYC G- quadruplex. 3) To determine how Ellipticine analogs modulate NM23-H2 binding and unfolding of the c-MYC G-quadruplex, and how this correlates with c-MYC transcriptional suppression.
Public Health Relevance Statement
PUBLIC HEALTH RELEVANCE: c-MYC is one of the most commonly deregulated genes in human cancers. The proposed research represents a novel strategy for modulating MYC gene expression by small molecule drugs. If successful, it combines the potential of a DNA-interactive compound with the selectivity properties of molecular-targeted cancer therapeutics.
No Sub Projects information available for 1R01CA177585-01A1
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01CA177585-01A1
Patents
No Patents information available for 1R01CA177585-01A1
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01CA177585-01A1
Clinical Studies
No Clinical Studies information available for 1R01CA177585-01A1
News and More
Related News Releases
No news release information available for 1R01CA177585-01A1
History
No Historical information available for 1R01CA177585-01A1
Similar Projects
No Similar Projects information available for 1R01CA177585-01A1