Genetic determinants of Chemo-Radiation Combination
Project Number5R21CA179441-02
Contact PI/Project LeaderLI, LEI
Awardee OrganizationUNIVERSITY OF TX MD ANDERSON CAN CTR
Description
Abstract Text
DESCRIPTION (provided by applicant): Radiation chemotherapy combination is a major remedy in treating a broad spectrum of solid tumors. The clinical efficacy of chemo-radiation combination is enhanced by a strong synergy effect between radiation and DNA alkylating drugs. To date, the mechanism(s) mediating the synergistic effect remains elusive. The genetic determinants of cellular sensitivity/resistance against chemo-radiation treatment remain undefined. This application is aimed at addressing these important questions via genetic approaches. Our long term objective is to reveal genes that play a crucial role in cellular resistance against chemo-radiation combination and the molecular basis of synergy between radiation and chemotherapy. To identify these genes in an unbiased manner, we have established high throughput platforms for genome-wide RNAi screen. An initial pilot screen has validated technical platform and acquired proof of principle results. The immediate goals of this R21 application are reflected by two Specific Aims, 1. To conduct multiple genome-wide primary screens for candidate genes critical for cellular survival against chemo-radiation treatment; 2. To
refine the primary hits in a secondary screen to functionally validate genes acting as synergy factors and genes prevalent in cellular resistant to chemo-radiation treatment. Unraveling genetic determinants of chemo-radiation response provides potential biomarkers for prognosis and treatment rationalization. Elucidating the biological underlining for synergy helps to derive novel therapeutic combinations. We expect this high risk/high reward project to yield clinically relevant as well as mechanistically informative candidates that could lead to further in- depth investigations to improve the chemo-radiation therapeutic regimen.
Public Health Relevance Statement
Chemo-radiation combination is an effective remedy for many solid tumors, but how each patient's genetic background influences the outcome of his/her combination therapy is poorly understood. Unraveling genetic factors affecting patient response to chemo-radiation therapy will be tremendously beneficial for the design of individualized treatment and for a much improved treatment prognosis. The main objective of this project is to use genome-wide screens to analyze the genetic determinants of chemo- radiation combination therapy.
No Sub Projects information available for 5R21CA179441-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R21CA179441-02
Patents
No Patents information available for 5R21CA179441-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R21CA179441-02
Clinical Studies
No Clinical Studies information available for 5R21CA179441-02
News and More
Related News Releases
No news release information available for 5R21CA179441-02
History
No Historical information available for 5R21CA179441-02
Similar Projects
No Similar Projects information available for 5R21CA179441-02