Awardee OrganizationUNIVERSITY OF ALABAMA AT BIRMINGHAM
Description
Abstract Text
DESCRIPTION (provided by applicant): Altered synaptic and structural plasticity play a crucial role in the pathogenesis of major depressive disorder (MDD); however, the precise molecular and cellular nature of events that lead to such altered plasticity remains unclear. Ca2+ is one of the critical molecules that play a decisive role in initiating and regulating synaptic and structural plasticity. A considerable body of evidence points to altered Ca2+ homeostasis and Ca2+ signaling in MDD. The varied effects of Ca2+ are mediated through Ca2+ sensing proteins; one highly characterized member is calmodulin (CaM). Recently, two different subfamilies of Ca2+ sensing proteins have been identified, i.e., neuronal Ca2+ sensing (NCS) and calcium binding (CaBP) proteins, that are solely or highly expressed in neurons. These proteins bind to Ca2+ with a very high affinity, undergo myristoylation and conformational changes, and thereby, interact with specific target proteins to mediate neuronal functions. These Ca2+ sensing/binding proteins and their novel target proteins have become a focus of great interest as potential molecular switches for plasticity phenomena. In a preliminary study, we found that the expression of Ca2+ sensing proteins are not only differentially regulated, but their interaction with specific target proteins are also disturbed in brains of MDD subjects. These changes were quite specific as either opposite or no changes were found in other mental disorders, i.e., bipolar disorder (BPD) or schizophrenia (SCHIZ). We hypothesize that Ca2+ sensing proteins, via their altered expression in a distinct manner, will affect their interactions with specific target proteins, which will lead to modulation in neural network/pathways, implicated in neural plasticity; these alterations will contribute to the pathogenesis of MDD. To test this, we propose a series of experiments examining Ca2+ sensing and their specific target proteins at molecular and cellular levels, in well-characterized and well-matched brain samples obtained from MDD and nonpsychiatric normal control subjects. We will examine the specificity of these changes by determining the proposed measures in brains of BPD or SCHIZ subjects. In addition, we will determine the consistency of changes in MDD by examining brain samples obtained from a different cohort. These studies will be performed in two brain areas, implicated in affective illnesses, namely, PFC and hippocampus. More specifically, we will examine: 1) expression and/or functional characteristics of a) NCS proteins NCS-1, VILIP1, VILIP2, VILIP3, hippocalcin, neurocalcin 4, and DREAM; b) CaBP proteins CaBP1 and CaBP4; and c) calmodulin; 2) the interactions of these Ca2+ sensing proteins with specific targets, i.e., PI 4-kinase 2, inositol trisphosphate receptors, CREB, neuronal apoptotic inhibitory protein, CaM kinase II, CaM kinase IV, and calcineurin; 3) the expression and/or functional characteristics of these target proteins. Our proposed study could lead to a fundamental breakthrough in our understanding of the molecular mechanisms associated with MDD, and also provide critical new insight for novel target-based drug discoveries for the treatment of MDD.
Public Health Relevance Statement
Our proposed study will yield important information on the neurobiology of depression and may indicate
possible novel sites for therapeutic interventions, which may eventually lead to better treatment and possibly
prevention of depression.
No Sub Projects information available for 7R01MH082802-06
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 7R01MH082802-06
Patents
No Patents information available for 7R01MH082802-06
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 7R01MH082802-06
Clinical Studies
No Clinical Studies information available for 7R01MH082802-06
News and More
Related News Releases
No news release information available for 7R01MH082802-06
History
No Historical information available for 7R01MH082802-06
Similar Projects
No Similar Projects information available for 7R01MH082802-06