DESCRIPTION (provided by applicant): Decades of cancer research have led to major breakthroughs in understanding cancer gene function and to important advances in diagnosis and treatment of these complex diseases. Despite this progress, most advanced cancers in adults are ultimately refractory to treatment, and cures for these common conditions remain out of reach. The difficulty in treating advanced cancers relates to many variables, including an incomplete understanding of how cancer initiates, the complexity of the alterations in cancer, heterogeneity in tumors and only a partial understanding of the molecular underpinnings of central cancer pathways. My research program over the next seven years seeks to address important aspects of these fundamental roadblocks. I will address the target cell populations from which cancers emerge - the cell-of-origin - and determine how these early beginnings are linked to one of the most fundamental properties of cancer cells, the acquisition of immortal proliferative properties. I will identify new telomerase-expressing stem cell populations in divers tissues and determine how they relate to cancer cells-of-origin. I will probe the mechanisms by which immortality is acquired by telomerase upregulation and reveal the means by which highly recurrent mutations in the TERT promoter promote tumorigenesis. I will devise methods for disrupting maintenance of the immortal phenotype, ultimately rendering cancer cells incapable of long-term proliferation or survival. Together, this program will lead to fundamental new insights into the origins of cancer, reveal how aspiring cancers circumvent critical bottlenecks they encounter during carcinogenesis and lead to new therapies with potential to treat many of the most refractory human cancers.
Public Health Relevance Statement
PUBLIC HEALTH RELEVANCE: Despite important progress in cancer research and treatment, most advanced cancers in adults remain ultimately refractory to treatment, and cures for these common conditions remain out of reach. The difficulty in treating advanced cancers relates to many variables, including a poor understanding of the cancer cell-of-origin, the tissue cell from which the cancer originates. I will investigate the cancer cell-of-origin in diverse cancers, determine how cellular immortality is achieved and discover small molecules that can reverse immortal growth in mature tumors.
No Sub Projects information available for 1R35CA197563-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R35CA197563-01
Patents
No Patents information available for 1R35CA197563-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R35CA197563-01
Clinical Studies
No Clinical Studies information available for 1R35CA197563-01
News and More
Related News Releases
No news release information available for 1R35CA197563-01
History
No Historical information available for 1R35CA197563-01
Similar Projects
No Similar Projects information available for 1R35CA197563-01