Characterization of oncogenic FGFR3-TACC3 fusion gene in glioblastoma
Project Number5R01CA183153-03
Contact PI/Project LeaderZHANG, WEI
Awardee OrganizationUNIVERSITY OF TX MD ANDERSON CAN CTR
Description
Abstract Text
DESCRIPTION (provided by applicant): Fusion genes are common chromosomal aberrations in many cancers, and can be used as prognostic markers and drug targets in clinical practice. By using whole transcriptome sequencing, we and others [1, 2] have discovered FGFR3-TACC3 fusions in glioblastoma (GBM) at a recurrence rate of up to 8.3%. The fusion, caused by a tandem duplication event on 4p16.3, promoted cell proliferation in vitro and tumor progression in vivo. Overexpression of the fusion in astrocytes lead to cellular aneuploidy [1], however the mechanisms facilitating aberrant chromosomal segregation remain to be elucidated. FGFR3-TACC3 fusion positive cells exhibited higher sensitivity to the MEK inhibitor U0126 or pan FGFR inhibitor PD173074 but were more resistant to the frontline GBM chemotherapy drug, Temozolomide (TMZ). Thus, our studies have identified a novel genetic alteration in GBM that is critical for at least two major hallmarks of this deadly disease: genomic instability and resistanc to chemotherapy. A recent report showed that the FGFR3-TACC3 fusion also occurs in bladder cancer [3]. Thus, the significance of this newly recognized genetic event is likely broad. We seek to further characterize this novel FGFR3-TACC3 oncogene. We hypothesize that the FGFR3-TACC3 fusion protein is a key genetic aberration that significantly modifies the signaling pathways during glioma development and progression contributing to the hallmarks of GBM. We plan to test our hypothesis by performing experiments that will determine the critical phosphorylation sites and domains within the fusion that promote tumor development, to determine the molecular mechanisms by which the fusion is resistant to temozolomide treatment, to determine the mechanisms by which the fusion promotes abnormal chromosomal segregation, and finally to determine the efficacy of current pharmacological inhibitors in treatin fusion containing tumors. We will use both in vitro and in vivo approaches to answer these questions.
Public Health Relevance Statement
PUBLIC HEALTH RELEVANCE: The oncogenic FGFR3-TACC3 fusion is found in 8.3% of GBM patients. We plan to elucidate the mechanisms by which the fusion promotes oncogenesis, as well as determine which current drug inhibitors would be best to combat fusion-positive tumors.
No Sub Projects information available for 5R01CA183153-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01CA183153-03
Patents
No Patents information available for 5R01CA183153-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01CA183153-03
Clinical Studies
No Clinical Studies information available for 5R01CA183153-03
News and More
Related News Releases
No news release information available for 5R01CA183153-03
History
No Historical information available for 5R01CA183153-03
Similar Projects
No Similar Projects information available for 5R01CA183153-03