DESCRIPTION (provided by applicant): Release of chemical transmitters by regulated exocytosis underlies many forms of intercellular communication, including hormone release and synaptic transmission. Exocytosis is subject to complex modulation and involves a web of protein-protein interactions and membrane remodeling events. G protein-coupled receptors (GPCRs) play a central role in orchestrating this complex regulation, and Gi/o- coupled GPCRs are well known to inhibit transmitter release from neurosecretory cells by release of G protein βγ subunits. This profound inhibition has the potential to contribute to presynaptic integration and synaptic plasticity. The best-studied mechanism for this inhibition is modulation of the voltage sensitivity of Ca2+ channels. However, Gβγ can also directly inhibit neurotransmitter release at a point distal to Ca2+ entry by binding to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins as well as the assembled SNARE complex. We have shown that the C-terminus of SNAP25 is critical for the ability to inhibit transmitter release. We have devised an assay of
Gβγ-SNAP25 interaction using the AlphaScreen, and have screened a small library of compounds that were designed based on known chemotypes which modulate protein-protein interaction (PPI) for both inhibitors and enhancers of this. In this grant, we will
optimize both inhibitors and enhancers of Gβγ-SNAP25 interaction In Aim 1, we will carry out medicinal chemical optimization of both classes of PPI compounds to increase their potency, selectivity, and bioavailability. In Aim 2, we will determine the selectivity of the compounds for Gβγ-SNAP25 interaction compared to other Gβγ-interacting proteins. In Aim 3, we will determine the effects of the optimized molecules on neurotransmitter release from hippocampal neurons in culture, and determine whether they synergize with the agonists and antagonists of presynaptic Gi/o-coupled GPCRs. These compounds should allow us to evaluate the importance of Gβγ-SNARE interaction for GPCR modulation of exocytosis. They may work in parallel with agonists or antagonists of presynaptic GPCRs, and thus synergize with presynaptic functions, selectively affecting presynaptic but not postsynaptic actions of neurotransmitters. The investigations we propose address a fundamental problem in neuroscience, the molecular mechanisms by which neurotransmitters control exocytosis. These studies may define targets for the development of new therapies that may shed light on the pathological basis of diseases related to secretion and neuromodulation.
Public Health Relevance Statement
PUBLIC HEALTH RELEVANCE: Regulation of neurotransmitter release by Gi/o-coupled neurotransmitter receptors is extremely important for normal brain functioning as well as plasticity, and dysfunction of this regulation leads to serious neuropsychiatric disease. Because dysregulation of presynaptic neurotransmitter function is involved in a variety of diseases, probes such as these may provide a path toward therapeutic approaches for pathologies of this regulatory interaction.
No Sub Projects information available for 5R01MH101679-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01MH101679-03
Patents
No Patents information available for 5R01MH101679-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01MH101679-03
Clinical Studies
No Clinical Studies information available for 5R01MH101679-03
News and More
Related News Releases
No news release information available for 5R01MH101679-03
History
No Historical information available for 5R01MH101679-03
Similar Projects
No Similar Projects information available for 5R01MH101679-03