Do we need Y chromosome for successful reproduction?
Project Number3R01HD072380-04S2
Contact PI/Project LeaderWARD, MONIKA A
Awardee OrganizationUNIVERSITY OF HAWAII AT MANOA
Description
Abstract Text
DESCRIPTION (provided by applicant): Male infertility affects 5-10% of the population. A major factor associated with male infertility is Y chromosome deletions, yet our understanding of the requirement for specific genes on the Y chromosome and of their roles in sperm production/function is still poor. Y chromosome genes may provide essential spermatogenic functions or just potentiate the spermatogenic process. Our long-term goal is to define the function of Y chromosome encoded genes in mice in a context of assisted reproduction technologies (ART) as a way to model human Y- linked infertility cases. We have established that only two Y chromosome genes, testis determinant gene Sry and spermatogonial proliferation factor Eif2s3y are required for production of male gametes capable of participating in assisted fertilization. In Preliminary Data we show that males with a Y complement limited to Sry and Eif2s3y have spermatogenesis arrest and do not produce mature sperm. The precursor haploid germ cells (spermatids) are rare and often abnormal. Nevertheless, with round spermatid injection (ROSI) we succeeded in producing viable, healthy, and fertile progeny. This offers a promise to men with extensive Y gene loss and resulting azoospermia. Here, our specific goal is to define whether ART can be achieved even without this minimum Y gene contribution. We will test the hypothesis that the Y chromosome complement can be eliminated entirely while retaining production of functional male gametes. In Aim 1 we wil test if transgenic activation of Sox9, a downstream effector of Sry, will effectively replace Sry function and whether Sry-to-Sox9 replacement affects spermatogenesis and fertility, testing directly for the as yet unknown function of these genes in mature gonads. We will also establish if Eif2s3x, an X encoded homologue of Eif2s3y, can replace Eif2s3y function in spermatogonial proliferation. We will generate and characterize mice transgenic for Eif2s3x, and assess whether overexpression of Eif2s3x can rescue spermatogonial proliferation arrest in XOSry mice. In Aim 2, we will produce males without any Y genes but with overexpression of Eif2s3x and with transgenic activation of Sox9, as well as males with one Y gene retained and the other replaced. We will investigate how the presence of these genes affects spermatogenesis progression. We will also test if spermatogenesis in these males enables development of germ cells functional in ART, and whether such produced offspring are normal. In Aim 3, we will attempt to rescue spermatogonial arrest in testes of mature males with in vivo Eif2s3y gene transfer using novel 'active transgenesis' approach and ultrasound mediated gene delivery. Our studies will advance the understanding of (1) the roles that key players of sex determination (Sry and Sox9) play in mature gonads; (2) the roles of sex chromosome genes (Eif2s3y and Eif2s3x) in the initiation of spermatogenesis; and (3) the compatibility of extensive Y gene loss with successful ART. Our results should translate to enhance treatment of human infertility associated with Y chromosome deletions.
Public Health Relevance Statement
The project will test, in a mouse model, whether males lacking the entire Y chromosome can generate functional gametes and father healthy offspring with assisted reproduction, in spite of their obvious infertility in normal fertilization. This wil be of importance for infertile men with extensive Y chromosome deletions, which are a target group of human ART. The project will also advance the understanding of the roles of Y chromosome encoded genes in spermatogenesis.
Eunice Kennedy Shriver National Institute of Child Health and Human Development
CFDA Code
865
DUNS Number
965088057
UEI
NSCKLFSSABF2
Project Start Date
25-August-2012
Project End Date
31-May-2016
Budget Start Date
01-June-2015
Budget End Date
31-May-2016
Project Funding Information for 2016
Total Funding
$19,513
Direct Costs
$13,790
Indirect Costs
$5,723
Year
Funding IC
FY Total Cost by IC
2016
Eunice Kennedy Shriver National Institute of Child Health and Human Development
$19,513
Year
Funding IC
FY Total Cost by IC
Sub Projects
No Sub Projects information available for 3R01HD072380-04S2
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 3R01HD072380-04S2
Patents
No Patents information available for 3R01HD072380-04S2
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 3R01HD072380-04S2
Clinical Studies
No Clinical Studies information available for 3R01HD072380-04S2
News and More
Related News Releases
No news release information available for 3R01HD072380-04S2
History
No Historical information available for 3R01HD072380-04S2
Similar Projects
No Similar Projects information available for 3R01HD072380-04S2