Mechanistic Analysis of the Ubiquitin-Proteasome System
Project Number5R35GM127032-03
Contact PI/Project LeaderKING, RANDALL W
Awardee OrganizationHARVARD MEDICAL SCHOOL
Description
Abstract Text
Project Summary / Abstract
The ubiquitin-proteasome system (UPS) regulates the activity, localization and stability of thousands of
proteins in the cell. By catalyzing the covalent attachment of ubiquitin to target proteins, the enzymes of the
UPS regulate virtually every cellular process, including cell signaling, cell survival and cell division. The
widespread influence of the UPS on biology also has important consequences for human health, as mutations
in components of the UPS cause diseases such as cancer. Encouragingly, the vast number of enzymes and
protein-protein interactions in the UPS are also providing new drug targets to treat disease. For these reasons,
mechanistic studies of the UPS have the potential to reveal new insights into biological regulation and may
also help us understand mechanisms of disease pathogenesis and therapy.
A major focus of this proposal is to study the Anaphase-Promoting Complex/Cyclosome (APC). The
APC is a multiprotein complex required for the attachment of ubiquitin to key proteins that regulate cell division.
In the absence of APC activity, cells arrest in mitosis. Because the APC is essential for cell division, it may
represent a useful drug target for the treatment of cancer. For these reasons, our lab has pioneered the
development of small molecule inhibitors of the APC, called TAME and apcin. We have defined the
mechanisms by which these inhibitors block APC activity. Here we propose to use these compounds to learn
more about APC function, by identifying novel proteins that fail to be degraded in the presence of the inhibitors.
In addition we plan to identify genes that influence the sensitivity of cells to APC inhibitors. Together these
experiments may reveal new functions of the APC, and may help identify mutations in cancer cells that make
them particularly sensitive to APC inhibition.
The APC is regulated through a number of complex mechanisms that are not fully understood.
Understanding APC regulation is important because proper timing of APC activation is essential for accurate
chromosome segregation. Furthermore, we do not understand how the cell controls the level of expression of
different APC subunits. To address these questions we plan to reconstitute key steps in APC-dependent
proteolysis using purified components. We also plan to quantitatively determine the composition of the APC
and associated proteins in different contexts to better understand its composition and function.
Finally, we have developed a new approach to identify novel substrates of the ubiquitin-proteasome
system. We propose to characterize these proteins to understand how they are degraded. We are particularly
interested in identifying enzymes that remove ubiquitin from these substrates, thereby opposing their
degradation. Together these studies will identify new pathways that regulate protein stability in the cell, and
may provide new starting points for the development of drugs to treat disease.
Public Health Relevance Statement
Project Narrative
The goal of our research program is to understand the mechanisms that eliminate proteins from the cell.
Because protein breakdown regulates important processes such as cell division, understanding these
pathways may help us develop new treatments for diseases such as cancer.
No Sub Projects information available for 5R35GM127032-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R35GM127032-03
Patents
No Patents information available for 5R35GM127032-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R35GM127032-03
Clinical Studies
No Clinical Studies information available for 5R35GM127032-03
News and More
Related News Releases
No news release information available for 5R35GM127032-03
History
No Historical information available for 5R35GM127032-03
Similar Projects
No Similar Projects information available for 5R35GM127032-03