Structural consequences of PKC-dependent phosphorylation of Kv7.2
Project Number4R00GM146028-03
Former Number5K99GM146028-02
Contact PI/Project LeaderARCHER, CRYSTAL RAE
Awardee OrganizationUNIVERSITY OF ARKANSAS AT FAYETTEVILLE
Description
Abstract Text
Project Summary
M channels are critical for regulating the excitability of neurons. Dysfunction of M channel activity can
cause epilepsy. While M channels have been intensely studied, the interplay of several G-protein-regulated
signaling cofactors on these channels is still poorly understood. M channels are hetero-tetrameric pore
structures formed by the combination of subunits Kv7.2-5. Over 80 mutations have been mapped to the Kv7.2
subunit, being a primary cause of neonatal epilepsy. Many of these mutations lie within the binding domains for
at least three critical signaling cofactors: calmodulin (CaM), phosphatidylinositol 4,5-bisphosphate (PIP2) and
protein kinase (PKC). How PIP2 and CaM binding to Kv7.2 harmonize to fine tune channel activity is obscure.
Moreover, the role played by PKC in tuning this binding is obscure. My preliminary data shows that PIP2 and
CaM may simultaneously bind the B helix with phosphorylation tempering this binding. My NMR studies so far
show that phosphorylation reconfigures the apoCaM-B helix interaction, suggesting the interplay between
these cofactors has significant impact on channel structure. I will test the overarching hypothesis that
phosphorylation at S520 and S527 fine-tunes the ability of PIP2 and CaM to bind to Kv7.2 and control M
channel activity. This hypothesis will be tested using three aims and will provide mechanistic understanding
of how phosphorylation, and dependent PIP2 and CaM binding affects the structure of Kv7.2 to control channel
activity. In Aim 1, I will use advanced 3D and 4D NMR to resolve the solution structure of purified Kv7.2 C
terminus. Aim 2 will use these NMR spectra to define the affinity of PIP2 to Kv7.2 and describe the
stoichiometry and mode of binding between PIP2 and the multiple sites on Kv7.2. Aim 3 will elaborate how
phosphorylation within the B helix directs the interplay between CaM and PIP2 binding to Kv7.2. The proposed
study is innovative because it will address a longstanding question about how and where PIP2 binds Kv7.2,
and will elaborate how phosphorylation directs the interplay between CaM and PIP2 as they bind Kv7.2. My
training in advanced 3D and 4D NMR will be critical for my career advancement as I plan to use this rigorous
technique throughout my career. The rich resources and supportive environment at UT Health combined with
my expertise in biophysical methods on ion channels makes me the ideal candidate to study the mechanisms
underlying the regulation of M channel activity. The MOSAIC career award will provide valuable financial
support to help me begin my multidisciplinary research program focused on elucidating the molecular
mechanisms of ion channel regulation.
Public Health Relevance Statement
Narrative
M-channels play a critical role for preventing neuronal excitability disease such as seizures. The details are
unclear regarding how M channel activity is regulated. The proposed study aims to provide a detailed
description of how M channels are regulated, which is expected improve therapies for excitability diseases.
No Sub Projects information available for 4R00GM146028-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 4R00GM146028-03
Patents
No Patents information available for 4R00GM146028-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 4R00GM146028-03
Clinical Studies
No Clinical Studies information available for 4R00GM146028-03
News and More
Related News Releases
No news release information available for 4R00GM146028-03
History
No Historical information available for 4R00GM146028-03
Similar Projects
No Similar Projects information available for 4R00GM146028-03