CRCNS: Input/Output Relationship in CA3 Pyramidal Cells
Project Number5R01AG025633-02
Contact PI/Project LeaderASCOLI, GIORGIO A
Awardee OrganizationGEORGE MASON UNIVERSITY
Description
Abstract Text
DESCRIPTION (provided by applicant): CA3 pyramidal cells (CA3pcs) constitute a central crossroad of synaptic integration in the hippocampus, and play a key role in spatial mapping and memory storage. CA3pcs are monosynaptically excited by the entorhinal cortex, dentate granule cells, and other CA3pcs. The electrophysiological repertoire of CA3pcs includes single spiking and bursting, spanning a broad range of frequencies. Despite a general understanding of the anatomy and physiology of CA3pcs, little is known about the correspondence between a given pattern of synaptic inputs and the resulting firing output. This information, which is essential to relate hippocampal activity and function, constitutes the main goal of this project. First, we will investigate CA3pc dendrite biophysics (passive properties, channel distributions and kinetics), and the unitary synaptic inputs from each pathway. This will be achieved with voltage- and current-clamp recordings, calcium imaging, and the creation of a detailed, data-driven computational model. Next, the firing patterns of CA3pcs will be examined in response to systematic combinations of excitatory inputs. Surgically and pharmacologically isolated pathways will be stimulated extracellularly at various intensities and frequencies, while recording from individual CA3pcs. Corresponding compartmental simulations, implemented and validated against the experiments, will extensively characterize the computational properties of CA3pcs with respect to non-linear summation, pathway specificity, and coincidence detection of synaptic input. The public health relevance of this project directly relates to the mission of the NIA. Malfunction of the hippocampus is linked to devastating age-related conditions such as Alzheimer's disease. The combination of state-of-the-art experimental techniques with the ever-increasing computational power of biophysical modeling will accelerate research progress and help develop highly trained neuroscientists. In addition to the dissemination of results in conferences and peer-reviewed publications, all models will be publicly distributed through internet archives.
No Sub Projects information available for 5R01AG025633-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01AG025633-02
Patents
No Patents information available for 5R01AG025633-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01AG025633-02
Clinical Studies
No Clinical Studies information available for 5R01AG025633-02
News and More
Related News Releases
No news release information available for 5R01AG025633-02
History
No Historical information available for 5R01AG025633-02
Similar Projects
No Similar Projects information available for 5R01AG025633-02