Neural mechanisms of sensory encoding after photoreceptor degeneration
Project Number1F32EY037105-01
Contact PI/Project LeaderBALRAJ, ANNIKA
Awardee OrganizationUNIVERSITY OF CALIFORNIA, SAN FRANCISCO
Description
Abstract Text
PROJECT SUMMARY/ABSTRACT
Studies have found that patients with retinal degeneration can lose up to half of all cones before visual deficits
are observed, suggesting a nonlinear relationship between cone loss and visual function. Previous studies from
our lab have demonstrated that compensation can occur at the level of individual retinal circuits, however it
remains unknown if all circuits react in the same way to cone loss. Loss of cone inputs disrupts stimulus
detection, which relies on neurons to use both signal and noise to represent stimulus properties. Empirical and
simulated neural activity of motion-sensitive cells suggest that, across neural populations, correlations in noise
(variability in stimulus-driven responses) can benefit stimulus encoding. However, the impact of noise
correlations in population coding and on visual behaviors is not fully understood. Remodeling of retinal circuitry
following cone degeneration may disrupt these neural computations, yet current approaches to vision restoration,
like stem cell replacement or electrical implants, rely on using the existing neural function after cone loss.
Consequently, it is critical to understand neural computation in individual retinal circuits after retinal degeneration.
To study this, we will leverage the dependence of the vertical optokinetic reflex (OKR), a visual behavior that
tracks global motion in the visual space, on the ON-direction selective ganglion cell (oDSGC). Two types of
oDSGCs prefer upward (Superior) or downward (Inferior) motion in visual space and form unique mosaics across
the retina, thus represent overlapping regions of visual space. The central hypothesis is that cone degeneration
disrupts shared cones between oDSGCs, which decreases noise correlations and decreases fidelity in the OKR
response. In these studies, we will use the cone-DTR mouse model, where selective apoptosis of M-opsin cones
can be induced in the adult mouse retina. We will characterize correlated noise in neighboring oDSGCs using
simultaneous paired recordings to determine the relationship between common inputs and noise correlations in
control and cone-deficient mice. These measures will be compared with histological and functional measures of
shared cone inputs. We will measure intracellular responses of oDSGCs to determine if noise correlations are
driven by inner retinal circuitry, and use pharmacological blockade to identify cell-specific sources of noise
correlations. Next, we will investigate the role of noise correlations in the computations underlying the OKR using
a model to test if opposing oDSGC type responses are subtracted prior to or after nonlinear pooling. We will
define the extent of oDSGC pooling by determining the representation of cones in visual space that elicits the
OKR using behavioral assessments of the OKR across stimulus size. Lastly, we will determine if these models
can predict the OKR in response to a novel noise correlation stimulus and following cone loss. These studies
will improve our understanding of the role of noise correlations in motion detection at the cellular, computational,
and behavioral levels.
Public Health Relevance Statement
PROJECT NARRATIVE
The aim of this project is to study the significance of noise correlations in neural computations to detect motion.
This research will quantify neural activity in population encoding of two retinal ganglion cell types and their impact
on the optokinetic reflex after cone loss, demonstrating how individual cell responses can affect behavior.
No Sub Projects information available for 1F32EY037105-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1F32EY037105-01
Patents
No Patents information available for 1F32EY037105-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1F32EY037105-01
Clinical Studies
No Clinical Studies information available for 1F32EY037105-01
News and More
Related News Releases
No news release information available for 1F32EY037105-01
History
No Historical information available for 1F32EY037105-01
Similar Projects
No Similar Projects information available for 1F32EY037105-01