Gene Expression Regulation in Brains of East Asian, African, and European Descent Explains Schizophrenia GWAS in Diverse Populations.
Project Number5R01MH126459-03
Former Number1R01MH126459-01
Contact PI/Project LeaderLIU, CHUNYU
Awardee OrganizationUPSTATE MEDICAL UNIVERSITY
Description
Abstract Text
Abstract
Psychiatric geneticists have discovered hundreds of common single nucleotide polymorphisms (SNPs)
associated with schizophrenia (SCZ) through genome-wide association studies (GWAS). Brain expression
quantitative trait loci (eQTL) can successfully explain some of those genetic associations. Differences in genetic
association between disparate ancestral populations are often reported, however, it is not known whether such
population differences originate from different underlying risk genes or from different allele frequencies and linkage
disequilibrium of the same risk genes. Our central hypothesis is that genetic regulation of gene expression
within brains, as represented by eQTL, can explain the disease GWAS signals. Population structure
influences eQTL as it influences GWAS. The major assumption is that the biological foundation of GWAS and
eQTL is the S-E-D relationship, short for SNP-Gene Expression-Disorder. Functional interpretation of GWAS signals
relies on the discovery of S-E-D relationships. Due to a lack of brain transcriptome data from populations of non-
European descent, interpreting SCZ GWAS results for variants uncommon in other populations presents a
significant challenge. To discover the causes of these population differences, we will develop a transcriptome
dataset of a new brain collection from East Asians (EA, N = 578) combined with samples from the existing
PsychENCODE project (EA, N = 18). We will also use data of individuals of African ancestry (AFR, N = 411) from
the PsychENCODE projects. Along with data from those of European descent (EU), which dominates the
PsychENCODE (N =1,321) projects, we will have brain transcription data of three major populations in the world.
Our specific aims include: 1) to relate SNPs to gene expression (the S-E portion of the S-E-D networks), we will
develop and compare eQTL and coexpression networks of postmortem brains from three populations, EA, AFR and
EU; 2) to connect SNP-expression to SCZ GWAS signals (the S-E-D aspect), we will use brain eQTL data to
explain SCZ GWAS of EA, EU and AFR populations and to identify SCZ risk loci that also serve as regulators of
brain gene expression; 3) to develop a novel cross-population predixcan algorithm that can infer genetically
regulated gene expression, and identify those differentially expressed in patients. The algorithm will be used
to re-analyze existing PGC SCZ data, and use Vanderbilt University data to replicate the findings. This study will
improve the understanding of the genetic contribution of population diversity to SCZ risk. It is critical for developing
more precise diagnoses and treatments for the benefit of diverse populations, for addressing health disparity.
Public Health Relevance Statement
Narrative
This study aims to learn the causes of population differences in genetic risks of schizophrenia through studying
genetic regulators of brain gene expression in donors of East Asian, African, and European ancestry, and create a
novel algorithm to impute genetically-regulated brain gene expression based on genotype data of diverse genetic
backgrounds. The study will improve our understanding of the biological mechanism of schizophrenia and discover
novel risk genes either specific to populations or shared across populations, with significant implications for
addressing human diversity, health disparities and for developing precision medicine.
No Sub Projects information available for 5R01MH126459-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R01MH126459-03
Patents
No Patents information available for 5R01MH126459-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R01MH126459-03
Clinical Studies
No Clinical Studies information available for 5R01MH126459-03
News and More
Related News Releases
No news release information available for 5R01MH126459-03
History
No Historical information available for 5R01MH126459-03
Similar Projects
No Similar Projects information available for 5R01MH126459-03