Awardee OrganizationINDIANA UNIVERSITY INDIANAPOLIS
Description
Abstract Text
DESCRIPTION (provided by applicant): Platinum (Pt) based therapies have proven to be curative treatments for a subset of cancers including the majority of testicular cancers. A large number of other cancer types including ovarian and lung, respond to Pt-based therapies which typically employ either cisplatin or carboplatin. Despite good initial responses in these cancers, tumor recurrence and resistance represent a significant and continuing clinical problem. The efficacy of these Pt-based therapies is a function of the formation of Pt-DNA adducts versus the removal of these adducts via DNA repair pathways. Removal of cisplatin-DNA lesions from the genome is catalyzed by the nucleotide excision repair (NER) pathway and is detrimental to treatment efficacy. In addition, while resistance to Pt-based therapies is typically multifactorial, clinical resistance often contains a DNA repair component. The goals of this work are to elucidate the molecular mechanism by which cisplatin-DNA damage is recognized and repaired by the NER pathway and to determine how perturbing the pathway influences cisplatin efficacy. Three Specific Aims are proposed to achieve the stated goals. In Aim 1 we will continue our study of the DNA damage recognition process by NER proteins. We will expand our focus to include the damage DNA binding protein (DDB) and the TFIIH complex. Building on the work accomplished in the previous grant periods with replication protein A (RPA), XPA and more recently XPC/hHR23B, we will use a novel combination of in vitro methodologies to construct a comprehensive structural, kinetic and biochemical model of the cisplatin-DNA recognition process by NER proteins. In Aim 2 we will employ a chemical genetics approach and develop small molecule inhibitors of NER DNA damage recognition proteins. Using these molecular tools we will determine how perturbing DNA damage recognition proteins influence in vitro DNA replication, repair and recombination pathways. In the third and final Aim we will assess how these inhibitors and perturbations of proteins involved in the damage recognition process influence cell proliferation, cell cycle progression, and ultimately cisplatin activity. The knowledge and molecular tools generated by this novel, innovative approach will likely impact the development of therapies targeting these pathways to overcome clinical resistance to cisplatin. The ultimate goal of this research is to translate the curative Pt-based therapies evident in certain cancers, to a wider array of cancers, including ovarian and lung.
No Sub Projects information available for 2R01CA082741-06A2
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 2R01CA082741-06A2
Patents
No Patents information available for 2R01CA082741-06A2
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 2R01CA082741-06A2
Clinical Studies
No Clinical Studies information available for 2R01CA082741-06A2
News and More
Related News Releases
No news release information available for 2R01CA082741-06A2
History
No Historical information available for 2R01CA082741-06A2
Similar Projects
No Similar Projects information available for 2R01CA082741-06A2