Contact PI/Project LeaderBOUDREAU, PAUL DAVIS Other PIs
Awardee OrganizationUNIVERSITY OF MISSISSIPPI
Description
Abstract Text
The production of the glycosphingolipid --Gal) by a member of the human gut microbiome was an intriguing result because these lipids are known to be immune stimulating antigens, and their production by the gut microbiome suggests a role in host-microbiome signaling.1 -Gal is the canonical agonist for the immune system’s CD1d receptor,2–4 but synthetic work has shown that when the -linked galactose is replaced with novel sugars, or sugar bioisosteres, the activity of the glycosphingolipid in immune signaling can change dramatically.5–7 These results suggest that bacteria which produce these glycosphingolipids, such as soil dwelling members of the order Sphingomonadales,8–10 might be a source of novel bioactive metabolites. In this project we have designed a soil enrichment screen using PCR amplification of serine palmitoyltransferase (SPT) gene, the first gene involved in sphingolipid synthesis,11,12 to identify sphingolipid producers. Follow-on lipidomic screening of SPT+ organisms on our laboratory’s QTOF LC-MS system will identify novel glycosphingolipids. By utilizing MS/MS fragment spectra analysis we will be able to identify sugar headgroups in our glycosphingolipids from neutral losses of the sugar monomers or the sugar fragment ions. Using GNPS-based molecular networking we will also be able to rapidly dereplicate known glycosphingolipid molecules, speeding up the process of identifying known chemistry to allow us to focus our efforts on novel sugar headgroups. With the novel organisms we isolate we will conduct Whole Genome Sequencing (WGS) with the Oxford Nanopore Technology’s nanopore platform to create a genomic data set that can be searched for the SPT gene. Inspired by the
“glycogenomic” approach of mapping sugar chemistry in secondary natural products to biosynthetic gene clusters,13 we will also interrogate our genomes compared against the glycosphingolipids identified by LC-MS/MS analysis to identify candidate genes in the biosynthetic pathway after the SPT gene. Though this poses some unique challenges as sphingolipids are primary metabolites and their biosynthesis is not organized in tight biosynthetic gene clusters as is common in secondary natural products, the use of gene knockouts or heterologous expression can help confirm the role of these genes in the production of complex glycosphingolipids. We will also be able to utilize the known promiscuity of bacterial SPT genes to feed in unnatural lipid molecules,1 using LC-MS/MS monitoring to detect the novel glycosphingolipids produced by the incorporation of these feedstocks, demonstrating what strains might be able to be manipulated into producing compounds with desirable changes to the lipid tail of the glycosphingolipids. Glycosphingolipids isolated from scale up of the cultures will be further characterized by NMR analysis to confirm our structure assignment by MS/MS fragmentation analysis. At the end of the project, our glycosphingolipids will be submitted to a bioassay for cytokine elicitation from macrophages as a first step towards showing the clinical relevance of our glycosphingolipid library.
No Sub Projects information available for 5P20GM130460-05 6137
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P20GM130460-05 6137
Patents
No Patents information available for 5P20GM130460-05 6137
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P20GM130460-05 6137
Clinical Studies
No Clinical Studies information available for 5P20GM130460-05 6137
News and More
Related News Releases
No news release information available for 5P20GM130460-05 6137
History
No Historical information available for 5P20GM130460-05 6137
Similar Projects
No Similar Projects information available for 5P20GM130460-05 6137