Regulation of endothelial adhesion by VE-cadherin endocytosis
Project Number5F30HL110447-03
Contact PI/Project LeaderNANES, BENJAMIN ANDREW
Awardee OrganizationEMORY UNIVERSITY
Description
Abstract Text
DESCRIPTION (provided by applicant): Vascular development and wound healing both depend on dynamic control of endothelial cell adhesion. However, inappropriate loss of adhesion contributes to pathology in inflammatory conditions. Modulation of cell-cell junctions controls endothelial adhesion, and understanding the mechanisms of junction regulation will lend insight into normal vascular development and disease. In this application, we seek to investigate the role of endocytosis in the regulation of vascular endothelial cadherin (VE-cadherin), the main adhesion molecule in endothelial adherens junctions. Despite the importance of VE-cadherin to vessel development, angiogenesis, and inflammation, relatively little is known about the mechanisms of its regulation. One way cells regulate the abundance of plasma membrane proteins such as VE-cadherin is through membrane trafficking. Previous work by our lab demonstrates that p120-catenin (p120), an Armadillo family protein that binds to the VE- cadherin cytoplasmic tail, protects VE-cadherin from rapid internalization and degradation. We hypothesize that disrupting p120 binding to VE-cadherin unmasks an endocytic adaptor binding site, leading to internalization of VE-cadherin and loss of adhesion in endothelial cells. To test this hypothesis, we will pursue the following specific aims. First, we wll identify the amino acid sequences in the VE-cadherin cytoplasmic tail which mediate adaptor binding and endocytosis. We will also test the functional consequences of mutations in VE-cadherin which prevent endocytosis. Second, we will use the ubiquitin ligase K5, which causes rapid down-regulation of VE-cadherin, as a model to determine if disrupting p120 binding is used as a mechanism to control VE-cadherin levels. We will identify the currently unknown mechanism by which K5 causes VE- cadherin down-regulation and its relationship to endogenous pathways for VE-cadherin control. Our long-term goal is to reveal how endothelial cells modulate the strength of cell-cell adhesion, leading to a better understanding of angiogenesis and new treatments for inflammatory disease.
Public Health Relevance Statement
Control of cell-cell adhesion in blood vessels is critical for vessel development and wound healing. Inappropriate loss of adhesion contributes to inflammation and tissue damage from diseases like heart attack, stroke, and severe infection. Studying the regulation of cell adhesion in blood vessels will identify potential new treatments for these diseases.
No Sub Projects information available for 5F30HL110447-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5F30HL110447-03
Patents
No Patents information available for 5F30HL110447-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5F30HL110447-03
Clinical Studies
No Clinical Studies information available for 5F30HL110447-03
News and More
Related News Releases
No news release information available for 5F30HL110447-03
History
No Historical information available for 5F30HL110447-03
Similar Projects
No Similar Projects information available for 5F30HL110447-03