Resource for Native Mass Spectrometry Guided Structural Biology
Project Number5P41GM128577-02
Contact PI/Project LeaderWYSOCKI, VICKI H.
Awardee OrganizationOHIO STATE UNIVERSITY
Description
Abstract Text
We propose a Resource for Native Mass Spectrometry Guided Structural Biology that will be led
by a team of scientists including experts in MS instrumentation (Wysocki, OSU; Russell, Texas A&M),
separation science coupled to ionization (Olesik, OSU; Badu, OSU; Holland; WVU), and computational
chemistry (Lindert, OSU). The goal of this Resource is to build and validate an integrated workflow for
structural characterization of protein:protein, membrane protein:lipid, and protein:RNA complexes that
are critical for an array of cellular and organismal processes. There is a growing appreciation of the
pivotal role and utility of MS-based approaches for structural characterization of biomacromolecules,
filling critical gaps and complementing other structural biology tools. Thus, our workplan leverages
innovative MS methods to determine: (i) m/z of all binding partners and the intact complex, (ii)
component stoichiometry, (iii) heterogeneity, if present, (iv) the relative topology/architecture/
conformational diversity of components in the complex, and (v) the hierarchy of assembly, including
binding affinities of individual subunits. Investigators from across the United States (in WA, OR, UT,
CA, AZ, TX, TN, OH, MD, MA) and international sites will contribute challenging biomedical projects on
topics including viral hemorrhagic fevers, HIV, cataract formation, and neurological disorders. Our
workflow is designed to advance understanding of: (i) how formation of and dynamic changes in wide-
ranging macro-molecular assemblies determine their biological roles, (ii) how alterations in
assembly/architecture of these complexes lead to disease, and (iii) foundational principles for building
synthetic mimics needed for biomedical applications. In this Resource, ten Driving Biomedical Projects
(DBPs) provide biomedical structural characterization challenges and serve as drivers and test beds
for five Technology Research and Development (TR&D) projects. The TR&Ds provide: (i) effective
separation methods to purify and deliver native macromolecular complexes well suited for MS, (ii)
effective surface-induced dissociation and UV-photodissociation technologies, (iii) measurement of the
intact complexes and their non-covalent (sub-complex) and covalent dissociation products with high
resolution ion mobility (IM) and/or MS, and (iv) computational tools for structure prediction.
Computational tools will use restraints from surface-induced dissociation patterns and collision cross
sections from IM-MS experiments, and from MS-based solution measurements (H/D exchange and
covalent labeling). Existing ties between the TR&Ds and instrument companies (Waters, Thermo,
Bruker, Sciex, Phenomenex) as well as a national laboratory (PNNL) will aid technology development
and expedite technology dissemination. Our training and dissemination activities (e.g., workshops, beta
device installations) are designed to increase outreach and maximize Resource payoffs.
Public Health Relevance Statement
A Resource for Native Mass Spectrometry Guided Structural Biology will be created. Advanced
scientific instrumentation and computational tools will be developed in close collaboration with
biomedical researchers, to further the understanding, prevention, and treatment of various
diseases and conditions such as HIV, hemorrhagic fevers, DNA/RNA defects, and neurological
dis orders .
No Sub Projects information available for 5P41GM128577-02
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5P41GM128577-02
Patents
No Patents information available for 5P41GM128577-02
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5P41GM128577-02
Clinical Studies
No Clinical Studies information available for 5P41GM128577-02
News and More
Related News Releases
No news release information available for 5P41GM128577-02
History
No Historical information available for 5P41GM128577-02
Similar Projects
No Similar Projects information available for 5P41GM128577-02