Imaging mechanisms of metastatic tumor formation in situ
Project Number1U54CA268072-01
Contact PI/Project LeaderDANUSER, GAUDENZ
Awardee OrganizationUT SOUTHWESTERN MEDICAL CENTER
Description
Abstract Text
Project Summary
In response to the RFA for a Cellular Cancer Biology Imaging Program we propose a program focused on
imaging and molecularly probing the cell biological events that drive the formation of new metastatic tumors.
Specifically, we will address two questions: 1) How does the intersection of shifts in cell-intrinsic and cell-
extrinsic signals associated with shifts in expression of the membrane adaptor protein Caveolin-1 affect the
metastatic propensity of pediatric sarcoma (Research Testbed Unit 1)? 2) What are the effects of cell-intrinsic
and cell-extrinsic variation in lipid metabolism on melanoma metastasis patterns (Research Testbed Unit 2)?
Answers to both questions depend on technology to capture the molecular, metabolic, and morphological
states of individual metastatic cells as they colonize the distant site: In the Technology Development Unit-1 we
will develop a multi-modal, multi-scale live imaging platform to investigate the effects of intersecting
microenvironmental variation across an organism and cell intrinsic heterogeneity on metastatic spreading. The
platform will leverage the exquisite optical and physiological properties of the zebrafish embryos to ‘watch’ at
once how cells form human tumor xenografts spread to multiple distant sites where they form metastatic
tumors. The microscope will allow seamless switching between a high-throughput screening mode observing
the metastatic patterns in tens to hundreds of embryos in one experiment and a high-resolution imaging mode
with fully isotropic resolution of 300 nm in XYZ that allows detailed analysis of the molecular, metabolic,
morphologic, and proliferation/survival states of individual cells within an emerging metastatic niche. In the
Technology Development Unit-2 we will develop a multi-scale imaging platform to investigate by hyper-spectral
analysis the molecular, metabolic, morphological, and functional states of metastatic cells across entire mouse
organs. The platform will leverage advances in tissue clearing, fully automated high-speed and high-resolution
light-sheet fluorescence imaging, and computer vision, to integrate a mesoscopic imaging mode for fast
acquisition of volumes of up to 20 x 20 x 20 mm at a ~5-10 micron isotropic resolution with a nanoscopic
imaging mode providing 300 nm XYZ-resolution throughout a 300 micron field of view anywhere in the organ.
Biological features can thus be rapidly identified and immediately interrogated with high subcellular resolution.
We will then develop physically and chemically accelerated 60-plex cyclic immunofluorescence assays to
comprehensively characterize the molecular, metabolic and architectural states of colonizing cells and their
surroundings in the metastatic niche in thick (~200 microns) tissue sections. To accurately describe metastatic
heterogeneity, the entire system, including sample handling, labeling, and imaging, will be fully automated and
operated in a high-throughput fashion. Our goal with this system is to enable comprehensive profiling of
heterogeneous cell metastatic cell behavior in 100’s of intact tissue specimens. Together, these platforms will
generate versatile imaging tools for a new era of in situ cancer cell biology.
Public Health Relevance Statement
Project Narrative
We propose a cancer cell imaging program to probe the mechanisms of metastatic tumor formation in the
context of the host environment. This critical step in the development of metastatic disease is likely to be
accompanied by vulnerabilities of the cancer cells that could be exploited for clinical treatment. The proposed
work will establish novel microscopy with unprecedented resolution while maintaining sufficient experimental
throughput to discover the relevant metastasis-driving processes at the single cell level.
No Sub Projects information available for 1U54CA268072-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1U54CA268072-01
Patents
No Patents information available for 1U54CA268072-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1U54CA268072-01
Clinical Studies
No Clinical Studies information available for 1U54CA268072-01
News and More
Related News Releases
No news release information available for 1U54CA268072-01
History
No Historical information available for 1U54CA268072-01
Similar Projects
No Similar Projects information available for 1U54CA268072-01